首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, KOD and its related DNA polymerases have been used for preparing various modified nucleic acids, including not only base-modified nucleic acids, but also sugar-modified ones, such as bridged/locked nucleic acid (BNA/LNA) which would be promising candidates for nucleic acid drugs. However, thus far, reasons for the effectiveness of KOD DNA polymerase for such purposes have not been clearly elucidated. Therefore, using mutated KOD DNA polymerases, we studied here their catalytic properties upon enzymatic incorporation of nucleotide analogues with base/sugar modifications. Experimental data indicate that their characteristic kinetic properties enabled incorporation of various modified nucleotides. Among those KOD mutants, one achieved efficient successive incorporation of bridged nucleotides with a 2'-ONHCH?CH?-4' linkage. In this study, the characteristic kinetic properties of KOD DNA polymerase for modified nucleoside triphosphates were shown, and the effectiveness of genetic engineering in improvement of the enzyme for modified nucleotide polymerization has been demonstrated.  相似文献   

2.
[Structure: see text] The synthesis of (S)-glycerol nucleoside triphosphates (gNTPs) and the analysis of their substrate activities for enzymatic polymerization is described. NTPs with simplified carbohydrate backbones such as the tNTPs (alpha-L-threose-NTPs) are polymerase substrates and offer the potential to create non-natural aptamer sequences with simplified backbones through enzymatic means. The acyclic (S)-GNA was modeled after the shortened alpha-threofuranosyl backbone. Here we describe the synthesis of (S)-glycerol NTPs and initial enzymatic testing of this further simplified nucleic acid backbone.  相似文献   

3.
4.
Polymerization of nucleic acids in biology utilizes 5′-nucleoside triphosphates (NTPs) as substrates. The prebiotic availability of NTPs has been unresolved and other derivatives of nucleoside-monophosphates (NMPs) have been studied. However, this latter approach necessitates a change in chemistries when transitioning to biology. Herein we show that diamidophosphate (DAP), in a one-pot amidophosphorylation-hydrolysis setting converts NMPs into the corresponding NTPs via 5′-nucleoside amidophosphates (NaPs). The resulting crude mixture of NTPs are accepted by proteinaceous- and ribozyme-polymerases as substrates for nucleic acid polymerization. This phosphorylation also operates at the level of oligonucleotides enabling ribozyme-mediated ligation. This one-pot protocol for simultaneous generation of NaPs and NTPs suggests that the transition from prebiotic-phosphorylation and oligomerization to an enzymatic processive-polymerization can be more continuous than previously anticipated.  相似文献   

5.
alpha-l-Threofuranosyl nucleoside triphosphates (tNTPs) are tetrafuranose nucleoside derivatives and potential progenitors of present-day beta-d-2'-deoxyribofuranosyl nucleoside triphosphates (dNTPs). Therminator DNA polymerase, a variant of the 9 degrees N DNA polymerase, is an efficient DNA-directed threosyl nucleic acid (TNA) polymerase. Here we report a detailed kinetic comparison of Therminator-catalyzed TNA and DNA syntheses. We examined the rate of single-nucleotide incorporation for all four tNTPs and dNTPs from a DNA primer-template complex and carried out parallel experiments with a chimeric DNA-TNA primer-DNA template containing five TNA residues at the primer 3'-terminus. Remarkably, no drop in the rate of TNA incorporation was observed in comparing the DNA-TNA primer to the all-DNA primer, suggesting that few primer-enzyme contacts are lost with a TNA primer. Moreover, comparison of the catalytic efficiency of TNA synthesis relative to DNA synthesis at the downstream positions reveals a difference of no greater than 5-fold in favor of the natural DNA substrate. This disparity becomes negligible when the TNA synthesis reaction mixture is supplemented with 1.25 mM MnCl(2). These results indicate that Therminator DNA polymerase can recognize both a TNA primer and tNTP substrates and is an effective catalyst of TNA polymerization despite changes in the geometry of the reactants.  相似文献   

6.
7.
A general approach to the synthesis of nucleoside conjugates between derivatives of thymidine (T), 2'-O-deoxycytidine (dC), 2'-O-deoxyadenosine (dA), and 2'-O-deoxyguanosine (dG), and metallacarborane complexes is described. Metallacarborane-nucleoside derivatives are prepared by reaction of the dioxane-metallacarborane adduct with a base-activated 3',5'-protected nucleoside. In the case of T and dG a mixture of regioisomers, which is easily separable by chromatographic methods, is obtained, thus yielding a series of modifications containing metallacarborane groups at the 2-O, 3-N, 4-O and 1-N, 2-N, 6-O locations, respectively; dC and dA are alkylated at the exo-amino function. The proposed methodology provides a route for the synthesis and study of nucleic acids modified with metallacarboranes at designated locations and a versatile approach to the incorporation of metals into DNA.  相似文献   

8.
The derivatization of nucleic acids with selenium is highly promising to facilitate nucleic acids structure determination by X-ray crystallography using the multiwavelength anomalous dispersion (MAD) technique. The foundation for such an approach has been laid by Huang, Egli, and co-workers and was exemplified on small DNA duplexes. Here, we present a comprehensive study on the preparation of RNAs containing 2'-Se-methylpyrimidine nucleoside labels. This includes the synthesis of a novel 2'-Se-methylcytidine phosphoramidite 11 and its incorporation into oligoribonucleotides by solid-phase synthesis. Deprotection of the oligonucleotides is achieved in the presence of millimolar amounts of threo-1,4-dimercapto-2,3-butandiol (DTT). With this additive, oxidation products and follow-up side-products are suppressed and acceptable HPLC traces of the crude material are obtained, so far tested for sequences of up to 22-mers. Moreover, an extensive investigation on the enzymatic ligation of the selenium-containing oligoribonucleotides demonstrates the high flexibility of the selenium approach. Our target sequence, an U6 snRNA stem-loop motif comprising all naturally occurring nucleoside modifications beside the Se-label is achieved by ligation using T4 RNA ligase.  相似文献   

9.
Chemically modified nucleoside triphosphates (NTPs) are widely exploited as unnatural metabolites in chemical biology and medicinal chemistry. Because anionic NTPs do not permeate cell membranes, their corresponding neutral precursors are employed in cell‐based assays. These precursors become active metabolites after enzymatic conversion, which often proceeds insufficiently. Here we show that metabolically‐active NTPs can be directly transported into eukaryotic cells and bacteria by the action of designed synthetic nucleoside triphosphate transporters (SNTTs). The transporter is composed of a receptor, which forms a non‐covalent complex with a triphosphate anion, and a cell‐penetrating agent, which translocates the complex across the plasma membrane. NTP is then released from the complex in the intracellular milieu and accumulates in nuclei and nucleoli in high concentration. The transport of NTPs proceeds rapidly (seconds to minutes) and selectively even in the presence of other organic anions. We demonstrate that this operationally simple and efficient means of transport of fluorescently labelled NTPs into cells can be used for metabolic labeling of DNA in live cells.  相似文献   

10.
Orthogonal nucleic acids are chemically modified nucleic acid polymers that are unable to transfer information with natural nucleic acids and thus can be used in synthetic biology to store and transfer genetic information independently. Recently, it was proposed that xylose-DNA (dXNA) can be considered to be a potential candidate for an orthogonal system. Herein, we present the structure in solution and conformational analysis of two self-complementary, fully modified dXNA oligonucleotides, as determined by CD and NMR spectroscopy. These studies are the initial experimental proof of the structural orthogonality of dXNAs. In aqueous solution, dXNA duplexes predominantly form a linear ladderlike (type-1) structure. This is the first example of a furanose nucleic acid that adopts a ladderlike structure. In the presence of salt, an equilibrium exists between two types of duplex form. The corresponding nucleoside triphosphates (dXNTPs) were synthesized and evaluated for their ability to be incorporated into a growing DNA chain by using several natural and mutant DNA polymerases. Despite the structural orthogonality of dXNA, DNA polymerase β mutant is able to incorporate the dXNTPs, showing DNA-dependent dXNA polymerase activity.  相似文献   

11.
The metabolic labeling of nucleic acids in living cells is highly desirable to track the dynamics of nucleic acid metabolism in real-time and has the potential to provide novel insights into cellular biology as well as pathogen-host interactions. Catalyst-free inverse electron demand Diels–Alder reactions (iEDDA) with nucleosides carrying highly reactive moieties such as axial 2-trans-cyclooctene (2TCOa) would be an ideal tool to allow intracellular labeling of DNA. However, cellular kinase phosphorylation of the modified nucleosides is needed after cellular uptake as triphosphates are not membrane permeable. Unfortunately, the narrow substrate window of most endogenous kinases limits the use of highly reactive moieties. Here, we apply our TriPPPro (triphosphate pronucleotide) approach to directly deliver a highly reactive 2TCOa-modified 2′-deoxycytidine triphosphate reporter into living cells. We show that this nucleoside triphosphate is metabolically incorporated into de novo synthesized cellular and viral DNA and can be labeled with highly reactive and cell-permeable fluorescent dye-tetrazine conjugates via iEDDA to visualize DNA in living cells directly. Thus, we present the first comprehensive method for live-cell imaging of cellular and viral nucleic acids using a two-step labeling approach.  相似文献   

12.
We report here the first synthesis of Te‐nucleoside phosphoramidites and Te‐modified oligonucleotides. We protected the 2′‐tellurium functionality by alkylation and found that the Te functionality is compatible with solid‐phase synthesis and that the Te oligonucleotides are stable during deprotection and purification. In addition, the redox properties of the Te functionalities have been explored. We found that the telluride and telluoxide DNAs are interchangeable by redox reactions. At elevated temperature, the Te‐DNA can also be site‐specifically fragmented oxidatively or reductively when 2′‐TePh functionality is present, whereas elimination of the nucleobase is observed in the presence of 2′‐TeMe. Moreover, the stability of the DNA duplexes derivatized with the Te functionalities has been investigated. Our Te derivatization of nucleic acids provides a novel approach for investigating DNA damage as well as for structure and function studies of nucleic acids and their protein complexes.  相似文献   

13.
Reaction of nucleoside triphosphates (NTPs) with amines in pyridine mediated by trimethylsilyl chloride produced nucleoside 5'-phosphoramidates in moderate yields without any preprotection of nucleosides and amino acid methyl esters. The reaction pathway is very similar to the mechanism of the RNA capping reaction, DNA or RNA ligation reaction, and catalysis of hydrolases and nucleases involving the formation of covalent enzyme-NMP (nucleoside 5'-monophosphate) intermediates in biological systems, which could provide a valuable clue for the enzymatic reactions.  相似文献   

14.
A GNA (glycol nucleic acid) functionalized nucleoside analogue containing the artificial nucleobase 1H‐imidazo[4,5‐f][1,10]phenanthroline (P) was used to form a copper(I)‐mediated base pair within a DNA duplex. The geometrical constraints imposed by the artificial nucleobase play a pivotal role in this unprecedented stabilization of copper(I) in aqueous medium via metal‐mediated base pairing. The formation of the copper(I)‐mediated base pair was investigated by temperature‐dependent UV spectroscopy and CD spectroscopy. The metal‐mediated base pair stabilizes the DNA oligonucleotide duplex by 23 °C. A redox chemistry approach confirmed that this base pair formation was due to the incorporation of copper(I) into the duplex. This first report of a copper(I)‐mediated base pair adds metal‐based diversity to the field and consequently opens up the range of possible applications of metal‐modified nucleic acids.  相似文献   

15.
The metabolic conversion of nucleoside analogues into their triphosphates often proceeds insufficiently. Rate‐limitations can be at the mono‐, but also at the di‐ and triphosphorylation steps. We developed a nucleoside triphosphate (NTP) delivery system (TriPPPro‐approach). In this approach, NTPs are masked by two bioreversible units at the γ‐phosphate. Using a procedure involving H‐phosphonate chemistry, a series of derivatives bearing approved, as well as potentially antivirally active, nucleoside analogues was synthesized. The enzyme‐triggered delivery of NTPs was demonstrated by pig liver esterase, in human T‐lymphocyte cell extracts and by a polymerase chain reaction using a prodrug of thymidine triphosphate. The TriPPPro‐compounds of some HIV‐inactive nucleoside analogues showed marked anti‐HIV activity. For cellular uptake studies, a fluorescent TriPPPro‐compound was prepared that delivered the triphosphorylated metabolite to intact CEM cells.  相似文献   

16.
Among the numerous chemosensors available for diphosphate (P(2)O(7)(4-), PPi) and nucleoside triphosphates (NTPs), only a few can distinguish between PPi and NTPs. Hence, very few bioanalytical applications based on such selective chemosensors have been realized. We have developed a new fluorescence sensing system for distinction between PPi and NTPs based on the combination of two sensors, a binuclear Zn(II) complex (1·2Zn) and boronic acid (BA), in which one chemosensor (1·2Zn) shows signal changes depending on the PPi (or NTP) concentration, and the other (BA) blocks the signal change caused by NTPs; this system enables the distinction of PPi from NTPs and is sensitive to nanomolar concentrations of PPi. The new sensing system has been successfully used for the direct quantification of RNA polymerase activity.  相似文献   

17.
Modified nucleoside mono- (dA(R)MPs and dC(R)MPs) and triphosphates (dA(R)TPs and dC(R)TPs) bearing bipyridine or terpyridine ligands attached via acetylene linker were prepared by single-step aqueous-phase Sonogashira cross-coupling of 7-iodo-7-deaza-dAMP or -dATP, and 5-iodo-dCMP or -dCTP with the corresponding bipyridine- or terpyridine-linked acetylenes. The modified dN(R)TPs were successfully incorporated into the oligonucleotides by primer extension experiment (PEX) using different DNA polymerases and the PEX products were used for post-synthetic complexation with Fe(2+).  相似文献   

18.
Two synthetically modified nucleoside triphosphate analogues (adenosine modified with an imidazole and uridine modified with a cationic amine) are enzymatically polymerized in tandem along a degenerate DNA library for the combinatorial selection of an RNAse A mimic. The selected activity is consistent with both electrostatic and general acid/base catalysis at physiological pH in the absence of divalent metal cations. The simultaneous use of two modified nucleotides to enrich the catalytic repertoire of DNA-based catalysts has never before been demonstrated and evidence of general acid/base catalysis at pH 7.4 for a DNAzyme has never been previously observed in the absence of a divalent metal cation or added cofactor. This work illustrates how the incorporation of protein-like functionalities in nucleic acids can bridge the gap between proteins and oligonucleotides underscoring the potential for using nucleic acid scaffolds in the development of new materials and improved catalysts for use in chemistry and medicine.  相似文献   

19.
The nucleoside triphosphates of N6-(2-deoxy-alpha,beta-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy.dGTP) and its C-nucleoside analogue (beta-C-Fapy.dGTP) were synthesized. The lability of the formamide group required that nucleoside triphosphate formation be carried out using an umpolung strategy in which pyrophosphate was activated toward nucleophilic attack. The Klenow fragment of DNA polymerase I from Escherichia coli accepted Fapy.dGTP and beta-C-Fapy.dGTP as substrates much less efficiently than it did dGTP. Subsequent extension of a primer containing either modified nucleotide was less affected compared to when the native nucleotide is present at the 3'-terminus. The specificity constants are sufficiently large that nucleoside triphosphate incorporation could account for the level of Fapy.dG observed in cells if 1% of the dGTP pool is converted to Fapy.dGTP. Similarly, polymerase-mediated introduction of beta-C-Fapy.dG could be useful for incorporating useful amounts of this nonhydrolyzable analogue for use as an inhibitor of base excision repair. The kinetic viability of these processes is enhanced by inefficient hydrolysis of Fapy.dGTP and beta-C-Fapy.dGTP by MutT, the E. coli enzyme that releases pyrophosphate and the corresponding nucleoside monophosphate upon reaction with structurally related nucleoside triphosphates.  相似文献   

20.
Single-step aqueous cross-coupling reactions of nucleobase-halogenated 2'-deoxynucleosides (8-bromo-2'-deoxyadenosine, 7-iodo-7-deaza-2'-deoxyadenosine, or 5-iodo-2'-deoxy-uridine) or their 5'-triphosphates with 4-boronophenylalanine or 4-ethynylphenylalanine have been developed and used for efficient synthesis of modified 2'-deoxynucleoside triphosphates (dNTPs) bearing amino acid groups. These dNTPs were then tested as substrates for DNA polymerases for construction of functionalized DNA through primer extension and PCR. While 8-substituted adenosine triphosphates were poor substrates for DNA polymerases, the corresponding 7-substituted 7-deazaadenine and 5-substituted uracil nucleotides were efficiently incorporated in place of dATP or dTTP, respectively, by Pwo (Pyrococcus woesei) DNA polymerase. Nucleotides bearing the amino acid connected through the less bulky acetylene linker were incorporated more efficiently than those directly linked through a more bulky phenylene group. In addition, combinations of modified dATPs and dTTPs were incorporated by Pwo polymerase. Novel functionalized DNA duplexes bearing amino acid moieties were prepared by this two-step approach. PCR can be used for amplification of duplexes bearing large number of modifications, while primer extension is suitable for introduction of just one or several modifications in a single DNA strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号