首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
YBa2Cu3O7−δ (YBCO) films with high critical current density (Jc) were successfully fabricated on nickel tapes buffered with epitaxial NiO. NiO was prepared on the textured nickel tape by the surface-oxidation epitaxy (SOE) method. We have reported so far a critical temperature (Tc) of 87 K and Jc=4–6×104 A/cm2 (77 K, 0 T) for the YBCO films on NiO/Ni tapes. To enhance the superconducting properties of the YBCO films on the SOE-grown NiO, depositions of thin oxide cap layers such as YSZ, CeO2, and MgO on NiO were investigated. These oxide cap layers were epitaxially grown on NiO and provided the template for the epitaxial growth of YBCO films. Substantially improved data of Tc=88 K and Jc=3×105 A/cm2 (77 K, 0 T) and 1×104 A/cm2 (77 K, Hc, 4 T) were obtained for YBCO film on NiO, by using a MgO cap layer with a thickness of 50 nm. The method described in this paper is a simple way to produce long YBCO tape conductors with high-Jc values.  相似文献   

2.
High-Tc superconducting thin films have been deposited in situ by means of a plasma assisted metal-organic chemical vapour deposition (PAMOCVD) process on LaAlO3. An EMCORE high-speed rotating disc reactor was used to deposit the films at a substrate temperature of 600°C to 800°C. The system is equipped with a (remote) 120 W microwave plasma generator. The oxidising plasma gas is N2O and/or O2 while Ar was used as the inert carrier gas for the different metal-organics. The influence of different process parameters (such as the temperatures of the metal-organics, substrate temperature, and plasma gas composition) on the superconductive properties and on the morphology of the films was investigated. Surface morphology and composition were studied by SEM/EDX or EPMA, and AC susceptibility measurements were used to investigate the superconductive properties (Tc and Jc). X-ray diffraction measurements indicated that single-phase YBa2Cu3O7−x films were epitaxially grown with the 00l orientation perpendicular to the substrate surface. The critical temperature (Tc) of the films is about 90 K and the critical current density (Jc) is higher than 106 A/cm2 at 77 K and zero field.  相似文献   

3.
Thin films of Bi2Sr2CaCu2O8 and (Bi, Pb)2Sr2Ca2Cu3O10 have been prepared on monocrystalline (100) MgO substrates, using a laser ablation method with post annealing treatment. The influence of substrate temperature and oxygen pressure during deposition were investigated. SEM observations, EDS analysis, electric and magnetic measurements have been used to characterize the films. Superconducting “2212” films, with Tc(R = 0) at 80–83 K and Jc (50 K) up to 5 × 105 A/cm2, have been currently achieved, while Pb-doped “2223” films exhibit Tc as high as 110 K with Jc = 5 × 104 A/cm2 at 77 K. The effect of annealing at low temperature (350°C) in an argon flow has been studied for the 2212 phase, it shows the influence of the oxygen non-stoichiometry, i.e. of the hole carrier density upon Tc's which can be measured up to 89 K (zero resistance).  相似文献   

4.
The recently reported superconducting YBa2Cu3Oy (Y123) foams are highly interesting and promising for variety of applications. In this report we present first magneto-transport measurements of the superconducting properties of these foams. The investigations reveal the superconducting properties being similar to those of bulk melt processed materials. The 123 foams reveal a Tc of 92 K and have a magnetization Jc of 40,000 A/cm2 at 77 K and 0 T. The measurements of magnetic hysteresis versus field show a high anisotropy of the critical current density up to Jcab/Jcc7.  相似文献   

5.
We report on the fabrication and characteristics of sandwich-type tunnel junctions with highly crystalline sputtered a-axis oriented thin film of Y1Ba2Cu3O7-x (YBC) as the base and the counter electrode. The junctions have been fabricated on SrTiO3 (100) and MgO (100) substrates. A non-superconducting phase of YBC corresponding to a lattice constant of 4.08 Å is used as the barrier layer making this an all YBC sandwich junction. For all temperatures below Tce (R=0) of the device, a zero voltage current was observed. The critical current density (Jc) of the device was found to be dependent on the thickness of the barrier layer and the crystallinity of the a-axis oriented YBC electrodes. At 40 K, such a junction fabricated on a SrTiO3 (100) substrate was found to have a Jc of 1.8 X 104 A/cm2 and an IcRn product of 0.2 mV.  相似文献   

6.
The influence of the sintering conditions on the microstructure and critical current density Jc has been studied on screen-printed Ag-(Bi, Pb)2Sr2Ca2Cu3Ox tapes with a ceramics mono-layer core. Three kinds of fabrication processes, which consist of a combination of cold working (rolling and/or pressing) and sintering, are applied. Four times repetition of pressing and sintering after the pre-sintering produces the highest c-axis alignment and achieves Jc= 1.5 × 104 A/cm2 (77 K, 0 T). The Jc versus θ data with an angle θ between B and the c-axis elucidate the relation between the anisotropy ratio γ=Jc(Bc)/Jc(B|c and the half-height angular width Δθ of a peak for Bc. This is related to both grain alignment and the Jc value. An increase in Jc, which comes from an improvement for grain alignment, enhances γ and narrows Δθ. The Jc versus θ data are fitted to the expression Jc(B, θ)=J c(B, 90°)/[(γ−1)|cos θ|n+1] by regarding both γ and n as adjustable parameters. Fabrication of screen-printed tapes with multilayers (1≤N≤5) is presented, where the critical current increases from 8.0 A to 30.2 A at 77 K and 0 T as N increases.  相似文献   

7.
陈艺灵  张辰  何法  王达  王越  冯庆荣 《物理学报》2013,62(19):197401-197401
通过混合物理化学气相沉积法 (hybrid physical-chemical vapor deposition, HPCVD), 在(000l) SiC 衬底上制得一系列从10 nm到8 μm的MgB2超导膜样品, 并对它们的形貌、超导转变温度Tc 和临界电流密度Jc与膜厚度的关系进行了研究. 观察到Tc随膜厚度增加上升到最大值后, 尽管膜继续增厚, 但Tc值保持近乎平稳, 而Jc则先随膜厚度增加上升到最高值后, 继而则随膜的厚度的增加而下降. MgB2膜的Tc(0)和Tc(onset)值与膜厚的关系基本一致, Tc(0)在膜厚为230 nm处达到最大值Tc(0)=41.4 K, 而Jc(5K,0T)在膜厚为100 nm时达到最大值, Jc (5 K, 0 T)=2.3×108A·cm-2, 这也说明了我们能用HPCVD方法制备出高质量干净MgB2超导膜. 本文研究的超导膜厚度变化跨度非常大, 从10 nm级的超薄膜到100 nm级的薄膜, 再到几微米的厚膜, 如此TcJc对膜厚度变化的依赖就有了较完整、成体系的研究. 并且本文的工作对MgB2超导薄膜制备的厚度选取具有实际应用意义. 关键词: 2超导膜')" href="#">MgB2超导膜 混合物理化学气相沉积法 厚度 临界电流密度  相似文献   

8.
潘杰云  张辰  何法  冯庆荣 《物理学报》2013,62(12):127401-127401
利用混合物理化学气相沉积法(HPCVD)在MgO(111)衬底上制备了干净的MgB2超导超薄膜. 在背景气体压强, 载气氢气流量以及沉积时间一定的情况下, 改变B2H6的流量, 制备得到不同厚度系列的MgB2超导薄膜样品, 并测量了其超导转变温度 Tc, 临界电流密度Jc等临界参量. 该系列超导薄膜沿c轴外延生长, 表面具有良好的连接性, 且有很高的超导转变温度Tc(0) ≈ 35-38 K和很小的剩余电阻率ρ(42 K) ≈ 1.8-20.3 μΩ·cm-1. 随着膜厚的减小而减小, 临界温度变低, 而剩余电阻率变大. 其中20 nm的样品在零磁场, 5K时的临界电流密度Jc ≈ 2.3×107 A/cm2. 表明了利用HPCVD在MgO(111)衬底上制备的MgB2超薄膜有很好的性能, 预示了其在超导电子器件中广阔的应用前景. 关键词: MgO(111)衬底 2超薄膜')" href="#">MgB2超薄膜 混合物理化学气相沉积  相似文献   

9.
The NdBa2Cu3Oy (Nd123) bulk superconductor, to which Nd4Ba2Cu2O10 (Nd422) particles were intentionally added, was prepared through the so-called MMTG process in Ar (99% purity) flowing atmosphere at an ambient pressure. The quasi-single crystal thus grown was about 1 cm × 1 cm × 1 cm in dimension. It turned out that the Nd422 particles were uniformly distributed in the Nd123-phase matrix in a fashion similar to the distribution of the intentionally added Y211 particles in the Y123 phase matrix. The superconducting transition temperature Tc for the sample subjected to post-annealing in oxygen atmosphere was 94 K. The critical current density Jc was determined to be 45 000 A/cm2 at 77 K and 1 T, when the field was applied parallel to the c-axis of the sample. To the best of our knowledge, the Jc value is the highest and the size of the quasi-single crystal is the largest in the melt-textured Nd123 bulk superconductors so far reported.  相似文献   

10.
Zone melting was used to enhance the Jc of suspension spun Bi2Sr2Ca1Cu2Ox filaments. By controlling the directional solidification of the molten zone, highly orientated textures were produced and a transport critical current density of more than 2 × 104 A/cm2 at 77 K, 0 T was achieved.  相似文献   

11.
High-transport critical current density (Jc-oxide)>500 kA/cm2 at 4.2 K, 10 T can be obtained for Bi-2212/Ag tapes fabricated by using pre-annealing and intermediate rolling (PAIR) and melt-solidification process. In this paper, we report high-temperature properties of PAIR-processed Bi-2212/Ag multilayer tape in order to show their potential for practical applications operated at cryocooling temperatures. Magnetic field dependence and angular dependence of critical current (Ic) are investigated at temperatures ranging 10–50 K by using helium gas cooling and liquid neon. Field-temperature curves for Ic=0.2 and 2.0 A are also determined in order to show the approximation of the irreversible field. High-temperature performance of the tape is attractive to consider future applications. For example, the best sample carries Ic=267 A (engineering-Jc=303 A/mm2, Jc-oxide=151 kA/cm2) and 92 A (104 A/mm2, 52 kA/cm2) at 27.1 K (in liquid neon), in magnetic fields (parallel to the tape surface) of 2 and 10 T, respectively. Engineering-Jc of 100 A/mm2 is obtained even in the perpendicular field of 0.5 T at 27.1 K.  相似文献   

12.
Smooth, epitaxial cerium dioxide thin films have been grown in-situ in the 450–650°C temperature range on (001) yttria-stabilized zirconia (YSZ) substrates by metal–organic chemical vapor deposition (MOCVD) using a new fluorine-free liquid Ce precursor. As assessed by X-ray diffraction, transmission electron microscopy (TEM), and high-resolution electron microscopy (HREM), the epitaxial films exhibit a columnar microstructure with atomically abrupt film-substrate interfaces and with only minor bending of the crystal plane parallel to the substrate surface near the interface and at the column boundaries. With fixed precursor temperature and gas flow rate, the CeO2 growth rate decreases from 10 Å/min at 450°C to 6.5 Å/min at 540°C. The root-mean-square roughness of the films also decreases from 15.5 Å at 450°C to 4.3 Å at 540°C. High-quality, epitaxial YBa2C3O7−x films have been successfully deposited on these MOCVD-derived CeO2 films grown at temperatures as low as 540°C. They exhibit Tc=86.5 K and Jc=1.08×106 A/cm2 at 77.4 K.  相似文献   

13.
The dependence of transport Jc value on the traveling rate and the nominal composition was investigated by taking different nominal compositions of YBa2Cu3O6+x (Y123) + n mol% Y2BaCuO5 (Y211) (n = 10, 20, 30, 40 and 50) with addition of 0.5 wt% of Pt on samples processed by different unidirectional solidification rates, namely 1, 3 and 5 mm/h. The highest Jc was found in the sample with 30% Y211 addition by the higher traveling rate adjusted to prevent the formation of polycrystals. In this φ 1.56 × 60 mm sample the values of transport Ic and Jc were 1370 A and 71 700 A/cm2, respectively, which were obtained by the conventional DC four-probe method with criterion of 1 μV/cm at 77 K and self-field.  相似文献   

14.
Methods of electron-spin resonance (ESR) and direct, non-linear field-modulated microwave absorption (FMMA) were applied for the measurements in low- and high-purity samples of rubidium-doped fullerene, Rb3C60. The coexistence of the normal strong ESR signals and regular series of weak absorption lines similar to those seen in systems of Josephson junctions was observed in the high-purity sample. The possible influence of the vortex lattice on the ESR signals was also studied. We determined from FMMA investigations using the Portis model the critical field μ0H* = 40 μT, the depinning current density Jc*0H0 = 1 mT) 4 × 108 A/m2 in low magnetic field and Jc*0H0 > 100 mT) 1.6 × 108 A/m2 in higher fields. These values were generally one order of magnitude higher than the highest corresponding values previously observed in high-temperature superconductors (HTS's).  相似文献   

15.
A systematic study of the magnetic hysteresis in transport properties of polycrystalline YBa2Cu3O7−δ–Ag compounds has been made based on two kinds of measurements at 77 K and under applied magnetic fields up to 30 mT: critical current density Jc(Ba) and magnetoresistance R(Ba). The R(Ba) curves show a minimum in their decreasing branch occurring at B=Bmin which was found to be both the excitation current Iex and the maximum applied magnetic field Bam dependent. In addition, for a certain value of Bam>5 mT, we have observed that Bmin increases with increasing Iex and reaches a saturation value. The Jc(Ba) curves show a maximum in decreasing applied magnetic fields occurring at B=Bmax. We have also found that Bmax increases with increasing Bam and reaches a saturation value. The minimum in the R(Ba) and the maximum in Jc(Ba) curves were found to be related to the trapped flux within the grains. All the experimental results are discussed within the context of the flux dynamics and transport mechanisms in these high-Tc materials.  相似文献   

16.
We have measured the resistivity of textured Bi1.84Pb0.4Sr2Ca2Cu3Oy silver-clamped thick films as a function of temperature, current density ranging from 10 to 1×103 A/cm2 and magnetic field up to 0.3 T. We find that the effective activation energy Ue follows Ue(T,J,H)=U0(1−T/Tp)mln(Jc0/J)H with m=1.75 for Hab-plane and 2.5 for Hc-axis and =0.76 for Hab and 0.97 for Hc, for the current density regime above 100 A/cm2, where Tp is a function of applied magnetic field and current density. This result suggests the effective activation energy Ue be correlated with the temperature, current density and magnetic field. The possible dissipative mechanisms responsible for the temperature, current density and magnetic field dependence of the effective activation energy are discussed.  相似文献   

17.
The thermal conductivity and thermopower are reported for a hole doped Eu1.5Ce0.5RuSr2Cu2O10+δ sample that has been annealed at 1100 K under an oxygen pressure of 54 atm. At Tc=45 K superconductivity and weak ferromagnetism coexist (Tm=180 K). Weak features in the thermopower, S(T), and thermal conductivity, κ(T), are observed both at Tm and at T*=140 K. The thermopower begins to decrease sharply toward zero at Tc, and there is an extremely sharp increase of about 30% in the thermal conductivity at Tc. This “first order” transition may be related to the sudden appearance of a spontaneous vortex phase at Tc. A small shoulder is observed in κ(T) in the temperature range T=5–13 K.  相似文献   

18.
The microstructures of a Tl0.8Pb0.2Bi0.2Sr1.6Ba0.4Ca2Cu3O9+δ/Ag tape (tape I) with Jc of 17,600 A/cm2 at 77 K and 0 T and three Tl0.8Pb0.2Bi0.2Sr1.8Ba0.2Ca2.2Cu3O9+δ/Ag tapes with Jc's of 9300 (tape II), 16,700 (tape III) and 25 200 A/cm2 (tape IV) prepared using the powder-in-tube method and an in-situ reaction method, were investigated using high-resolution transmission electron microscopy. In the tape preparation, an intermediate rolling process was incorporated during final heat-treatment for the last tape, but not for the rest of the tapes. Tl-1223 grains are in a thin plate-like shape. Tendency of directional grain-alignment increased in an order of tapes I, II, II and IV. In tape IV, Tl-1223 grains are clearly textured at least partly. In lattice defects, while stacking faults were prevalent in the former composition, dislocations and holes were frequently observed in the latter. Also impurity phases were appeared to be more abundant in the former than in the latter. The relationship between Jc and the microstructure in the tapes was explained in a term of grain-linking.  相似文献   

19.
Bi-Pb-Sr-Ca-Cu-O superconductor compounds have been doped with up to 30 wt% Ag, sintered under variable oxygen partial pressure, and characterised in terms of the electrical and crystallographic behaviour. In contrast to previous reports that claim that Ag is the only metal non-poisoning to the superconductivity of Bi-Sr-Ca-Cu-O (BSCCO), it has been found that Ag additions to Bi-Pb-Sr-Ca-Cu-O depress Tc and Jc drastically and cause a large decrease in lattice parameters when samples are treated in air or pure oxygen. However, the lattice parameters, Tc and Jc remain unaffected by Ag additions when samples are heat treated in 0.030–0.067 atm oxygen. It is clear that the Ag reacts with and destabilises the superconducting phase when the samples are treated in air or pure oxygen while, when the samples are heat treated in low oxygen partial pressures, the Ag remains as an isolated inert metal phase that improves the weak links between the grains. This discovery clearly shows the feasibility of Ag-clad superconductor wire. For Ag-clad superconductor tape of 0.1 mm2 cross sectional area heat treated in air, Jc was measured to be 54 A/cm2. The same specimen sintered in 0.067 atm oxygen showed that the Jc increased to 2078 A/cm2.  相似文献   

20.
The annealing characteristics and the superconducting properties of Tl2Ca2Ba2Cu3O10 thin films sputter-deposited onto yttrium- stabilized ZrO2 substrate at up to 500°C from two stoichiometric oxide targets are reported. The films deposited at 400–500°C were found to require a lower post-annealing temperature than the films deposited at lower temperatures to attain the highest Tc superconducting state, due to a more pronounced Ba diffusion toward the substrate as indicated by their secondary ion mass spectrometry depth profiles. The highest Tc achieved tends to degrade with increasing substrate temperatures, a zero resistance Tc of 121 and ≈90 K, respectively, being observed for the films deposited at -ambient temperature and at 500°C. The formation of the highest Tc phase (Tl2Ca2Ba2Cu3O10) generally is associated with a sheet type of crystal growth morphology with smooth and aligned surfaces which can be obtained only from the films capable of sustaining prolonged annealing at 900°C. Annealing at lower temperatures (≈860°C) results in the formation of rod or sphere type of morphologies with rough and randomly oriented crystals and the lower Tc phases such as Tl2Ca1Ba2Cu2O8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号