首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existence of a metastable cluster He 4 * with total spin S = 2 is predicted. The cluster consists of two covalently bound excited spin-polarized triplet He 2 * molecules and is rectangular in shape. The electron wavefunctions, the dependence of the energy He 4 * system on the distance between the He 2 * triplet molecules, the atomic spacing, the frequency spectrum of natural oscillations of the cluster, and other characteristics are calculated from first principles. It is shown that the metastable state is formed if one of the excited He 2 * molecules is in the 3Σ u + state, while the other is in the 3Πg state. The radiation lifetime τ of the metastable cluster He 4 * is calculated; it is found to range from 100 to 200 s, which is much longer than the lifetime τ ≈ 20 s of the triplet molecule He 2 * (3Σ u + ). The height U ≈ 0.5 eV of the potential barrier preventing the departure from the local energy minimum is determined. The energy Eacc ≈ 9 eV/atom accumulated in the He 4 * cluster is calculated; this energy considerably exceeds the energy of known chemical energy carriers. It is shown that the accumulated energy is released virtually completely during decomposition of the He 4 * cluster into individual helium atoms. This means that helium clusters are a promising material with a high accumulated energy density (HEDM).  相似文献   

2.
The modification of GaAs with a 2500-eV beam containing N 2 + and Ar+ ions is examined with Auger electron spectroscopy. Most implanted nitrogen atoms are found to react with the matrix, substituting arsenic atoms to produce a several-nanometer-thick layer of the single-phase GaAs1−x Nx (x=6%) solid solution. The GaN phase is absent. Displaced arsenic atoms and nitrogen atoms unreacted with the matrix are present in the layer and on its surface. The former segregate, whereas the latter form molecules.  相似文献   

3.
4.
Absolute cross-sections for electron-impact dissociative ionization of C2 H2+ and C2 D2+ to CH+, C+, C2+ , H+, CH2+ and C2D+ fragments are determined for electron energies ranging from the corresponding threshold to 2.5 keV. Results obtained in a crossed beams experiment are analyzed to estimate the contribution of dissociative ionization to each fragment formation. The dissociative ionization cross sections are seen to decrease for more than an order of magnitude, from CH+ (5.37±0.10) × 10-17 cm2 over C+ (4.19± 0.16) × 10-17 cm2, C2D+ (3.94±0.38) × 10-17 cm2, C2+ (3.82±0.15) × 10-17 cm2 and H+ (3.37±0.21) × 10-17 cm2 to CH2+ (2.66±0.14) × 10-18 cm2. Kinetic energy release distributions of fragment ions are also determined from the analysis of the product velocity distribution. Cross section values, threshold energies and kinetic energies are compared with the data available from the literature. Conforming to the scheme used in the study of the dissociative excitation of C2H2+ ( C2 D2+ )\left( {\rm C}_2 {\rm D}_2^+ \right), the cross-sections are presented in a format suitable for their implementation in plasma simulation codes.  相似文献   

5.
The dynamics of cold atoms in conservative optical lattices obviously depends on the geometry of the lattice. But very similar lattices may lead to deeply different dynamics. In a 2D optical lattice with a square mesh, it is expected that the coupling between the degrees of freedom leads to chaotic motions. However, in some conditions, chaos remains marginal. The aim of this paper is to understand the dynamical mechanisms inhibiting the appearance of chaos in such a case. As the quantum dynamics of a system is defined as a function of its classical dynamics – e.g. quantum chaos is defined as the quantum regime of a system whose classical dynamics is chaotic – we focus here on the dynamical regimes of classical atoms inside a well. We show that when chaos is inhibited, the motions in the two directions of space are frequency locked in most of the phase space, for most of the parameters of the lattice and atoms. This synchronization, not as strict as that of a dissipative system, is nevertheless a mechanism powerful enough to explain that chaos cannot appear in such conditions.  相似文献   

6.
Absolute cross-sections for electron-impact ionization and dissociation of C2H2+ and C2D2+ have been measured for electron energies ranging from the corresponding thresholds up to 2.5 keV. The animated crossed beams experiment has been used. Light as well as heavy fragment ions that are produced from the ionization and the dissociation of the target have been detected for the first time. The maximum of the cross-section for single ionization is found to be (5.56 ± 0.03)× 10-17 cm2 around 140 eV. Cross-sections for dissociation of C2 H2+ (C2D2+) to ionic products are seen to decrease for two orders of magnitude, from C2D+ (12.6 ± 0.3) × 10-17 cm2 over CH+(9.55 ± 0.06) × 10-17 cm2, C+ (6.66 ± 0.05) × 10-17 cm2, C2+ (5.36 ± 0.27) × 10-17 cm2, H+ (4.73 ± 0.29) × 10-17 cm2 and CH2+ (4.56 ± 0.27) × 10-18 cm2 to H2+ (5.68 ± 0.49) × 10-19 cm2. Absolute cross-sections and threshold energies have been compared with the scarce data available in the literature.  相似文献   

7.
The decay path of an Ag8(O2)- cluster photoexcited by a 3.1 eV photon is elucidated using time-resolved photoelectron spectroscopy. Photoabsorption results in the formation of an excited state giving rise to a peak in the photoelectron spectra with well-resolved vibrational finestructure. With a lifetime of about 100 fs this bound state decays into an anti-bonding state which dissociates into O2 and Ag8- on a timescale of 10 ps. In the photoelectron spectra, this corresponds to a broad maximum shifting gradually towards higher binding energy while the O2 and Ag8- separate. Finally, the spectrum of bare Ag8- appears. This process is unique to small clusters, because on metal surfaces excited state lifetimes are too short to allow for direct dissociation.  相似文献   

8.
An algebraic model that describes the internal dynamics of the ionic complexes ArH3+ and ArD3+ in the ground electronic-vibrational state taking into account the torsional motion of the structure of identical hydrogen nuclei is constructed by symmetry-group chain methods. It is important that the correctness of this model is only limited by the correctness of the choice of geometric symmetry of the internal dynamics of the ionic complex.  相似文献   

9.
The behaviour of freely suspended smectic-C* ( SmC*) films at the bulk SmC*-cholesteric ( N*) phase transition has been investigated using polarized-reflected-light microscopy. Our experimental observations show that above the bulk SmC*- N* phase transition the N* order appears in different ways according to the film thickness. In thin films, the conventional layer-by-layer thinning occurs. In films of intermediate thickness N* inclusions nucleate inside the SmC* film. The distortions of the in-plane orientational order of the SmC* host phase induce elastic interactions between the inclusions and lead to their self-organization in chain-like structures. Both the dynamic of the chaining and the parameters driving the equilibrium distance between the inclusions in the chain are investigated. In thick films, N* fingers grow inside the film. The influence of the experimental conditions on the various processes is analysed. Received 1 July 2002 / Published online: 15 April 2003 RID="a" ID="a"e-mail: Philippe.cluzeau@univ-lille1.fr  相似文献   

10.
The results of ab initio studies of the atomic and charge structure of small clusters and cluster ions formed by 13 and 19 argon atoms are reported. It was found that the icosahedral atomic structure is energetically the most favorable for such clusters. The calculations demonstrate that when a single electron is removed from a cluster, the excess positive charge is distributed primarily over the surface of the formed cluster ion.  相似文献   

11.
12.
We have studied the formation of the molecular ion Rb2+ and the atomic ion Rb+. These are created in laser excited rubidium vapor at the first resonance, 5s–5p and 5p-nl transitions. A theoretical model is applied to this interaction to explain the time evolution and the laser-power dependence of the population density of Rb+ and Rb2+. A set of rate equations which describe: the temporal variation of the population density of the excited states; the atomic ion density; and the electron density, were solved numerically under the experimental conditions of Barbier and Cheret. In their experiment the Rb concentration was 1×1013cm−3 and the laser power was taken to be 50–500 mW at vapor temperature = 450 K. The results showed that the main processes for producing Rb2+ are associative ionization and Hornbeck-Molnar ionization. The calculations have also showed that, the atomic ions Rb+ are formed through the Penning Ionization (PI) and photoionization processes. Moreover, a reasonable agreement between the experimental results and our calculations for the ion currents of the Rb+ and Rb2+ is obtained.   相似文献   

13.
The results of the theoretical investigation of the surface electronic structure of A2VB3VI compounds containing topologically protected surface states are reported. The ideal Bi2Te3, Bi2Se3, and Sb2Te3 surfaces and surfaces with an absent external layer of chalcogen atoms, which were observed experimentally as monolayer terraces, have been considered. It has been shown that the discrepancy between the calculated Fermi level and the value measured in the photoemission experiments can be attributed to the presence of the “dangling bond” states on the surface of the terraces formed by semimetal atoms. The fraction of such terraces on the surface has been estimated.  相似文献   

14.
Using the symmetry group chain methods, the internal dynamics of the simplest carbocation, C2H 3 + , is analyzed under the traditional assumptions that the equilibrium structures of the carbocation are planar and that the nonrigid motion between them is in-plane. This geometry of the internal dynamics is shown to agree with the data of the microwave spectroscopy on the splittings of rotational energy levels caused by the nonrigid motion. Previously, this statement was based on the model that violated the requirement of self-adjointness of operators of physical quantities.  相似文献   

15.
16.
The processes involved in the excited-state relaxation of hole O 1 0 centers at nonbridging oxygen atoms in glassy SiO2 were studied using luminescence, optical absorption, and photoelectron emission spectroscopy. An additional nonradiative relaxation channel, in addition to the intracenter quenching of the 1.9-eV luminescence band, was established to become operative at temperatures above 370 K. This effect manifests itself in experiments as a negative deviation of the temperature-dependent luminescence intensity from the well-known Mott law and is identified as thermally activated external quenching with an energy barrier of 0.46 eV. Nonradiative transitions initiate, within the external quenching temperature interval, the migration of excitation energy, followed by the creation of free electrons. In the final stages, this relaxation process becomes manifest in the form of spectral sensitization of electron photoemission, which is excited in the hole O 1 0 -center absorption band.  相似文献   

17.
Terbium silica hybrid material with imidazole ring that can be emissive in water has been designed and showed host-guest interactions with specific ions (cations and anions). In detail, we studied the sensing abilities of this material by addition of the anions H2PO4-, HSO4-, F-, Cl-, Br- and I- to water suspension of the derived powders. Only dihydrogen phosphate resulted in the quenching of the lanthanide luminescence (detection limit 10-5 M). The same way was found in Cu2+ ions which also gave rise to luminescence quenching (detection limit 10-5 M). More interestingly, luminescent sol-gel films were successfully prepared by the same materials and exhibited emission responses to H2PO4- and Cu2+. For the sake of improving its mechanical property, the robust and flexible inorganic/PMMA hybrid material with sensing capability was also developed for future use.  相似文献   

18.
19.
The third continuum of argon from 200 to 270 nm is obtained by electron beam pumping argon. With the front mirror and the rear mirror, the resonator effects are observed at 240 and 220 nm. Compared with the intensity of fluorescence, the intensity near 240 nm increases more than 10 times when the resonator is formed. In order to explain the origin of the continuum, the kinetic model on Ar2+ and Ar22+ ionic excimers pumped by electron beam is built and calculated. Based on the theoretical results, the Ar2+ ionic excimer should be responsible for the continuum around 240 nm.  相似文献   

20.
Single-particle energies E nlj of neutron states in the 28 68 Ni40 nucleus are estimated on the basis of extrapolation of the experimental values of E nlj in the 58,60,62,64Ni isotopes. The data obtained are compared with the results of calculation within the dispersion optical model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号