首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Well-defined poly(2-(dimethylamino) ethyl methacrylate)-block-fullerene [60] ((PDMAEMA)-b-C(60)) with a galactose targeting moiety was prepared by atom-transfer radical polymerization (ATRP). This copolymer was designed for possible use as a targeted drug carrier. The chemical composition and the self-assembly behavior were characterized using different techniques, including GPC, NMR, UV, and DLS. The self-assembly of the galactose-functionalized PDMAEMA-b-C(60) structure in aqueous solutions was investigated using dynamic light scattering (DLS) under different pH conditions. At pH 3 and 10, the DLS results showed the presence of both polymeric micelles and unimers. However, a smaller R(h) was observed at pH 10 than at pH 3 because of electrostatic repulsion at low pH values. In addition, free PDMAEMA chains induced the demicellization of self-assembled nanostructures caused by the formation of a charge-transfer complex between PDMAEMA and C(60.) This phenomenon offers possible applications for free-polymer-triggered drug release.  相似文献   

2.
Double hydrophilic brush copolymer poly(ethylene oxide)-graft-poly(N,N-dimethylaminoethyl methacrylate) (PEO-g-PDMAEMA) was successfully prepared via atom transfer radical polymerization (ATRP). We investigated the pH/thermoresponsive behaviors of PEO-g-PDMAEMA brush-shaped copolymer concentrated aqueous solutions by rheology. The observed LCST strongly decreased with increasing pH of the solutions, which was lower than that of linear block copolymer for different pH, indicating rapid thermoresponsiveness of the brush PDMAEMA chains. An unexpected shear thickening behavior was observed and could be tuned by the pH, resulting from the mobile nature and tractive force of the densely grafted hydrophobic chains of PDMAEMA at high pH. Self-assembly of the brush copolymer in a different pH and ionic strength environment was studied by transmission electron microscopy. A wormlike cylinder structure was formed at low pH. Fractals were observed for the brush copolymer aqueous solution in the presence of NaCl. The results showed that by adjusting the pH and NaCl concentration of the dispersions fractal aggregates with different topology were obtained. The observations reported here can supply a better understanding of the molecular self-assembling nature and be used to develop responsive materials with better performance.  相似文献   

3.
A novel pH- and temperature-responsive water-soluble [60]fullerene-containing poly[2-(dimethylamino)ethyl methacrylate] (C60-b-PDMAEMA) was synthesized by atom transfer radical polymerization. The pH and temperature dependence of the physical properties of the aqueous C60-b-PDMAEMA solution was studied by potentiometric and conductometric titrations, UV-vis transmittance, and laser light scattering techniques. At low pH and at temperatures ranging from 25 to 55 degrees C, in addition to C60-b-PDMAEMA unimers, micelle-like aggregates are produced in the aqueous solution containing C60 hydrophobic cores and protonated PDMAEMA shells. Only unimeric C60-b-PDMAEMAs are found to exist in solution at high pH and low temperature, where PDMAEMA segments form a charge-transfer complex with C60 molecules. However, C60-b-PDMAEMA precipitates from aqueous solution at temperatures exceeding the lower critical solution temperature of PDMAEMA of approximately 45 degrees C. The pH and temperature stimuli-responsive properties of the [60]fullerene-containing polymer in aqueous solution are completely reversible.  相似文献   

4.
A novel amphiphilic thermosensitive star copolymer with a hydrophobic hyperbranched poly (3‐ethyl‐3‐(hydroxymethyl)oxetane) (HBPO) core and many hydrophilic poly(2‐(dimethylamino) ethyl methacrylate) (PDMAEMA) arms was synthesized and used as the precursor for the aqueous solution self‐assembly. All the copolymers directly aggregated into core–shell unimolecular micelles (around 10 nm) and size‐controllable large multimolecular micelles (around 100 nm) in water at room temperature, according to pyrene probe fluorescence spectrometry and 1H NMR, TEM, and DLS measurements. The star copolymers also underwent sharp, thermosensitive phase transitions at a lower critical solution temperature (LCST), which were proved to be originated from the secondary aggregation of the large micelles driven by increasing hydrophobic interaction due to the dehydration of PDMAEMA shells on heating. A quantitative variable temperature NMR analysis method was designed by using potassium hydrogen phthalate as an external standard and displayed great potential to evaluate the LCST transition at the molecular level. The drug loading and temperature‐dependent release properties of HBPO‐star‐PDMAEMA micelles were also investigated by using indomethacin as a model drug. The indomethacin‐loaded micelles displayed a rapid drug release at a temperature around LCST. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 668–681, 2008  相似文献   

5.
The fabrication of a new amphiphilic block copolymer composed of a poly DL-lactic acid (PLA) hydrophobic backbone and pH dependent thermo-sensitive poly (N-isopropyl) methacrylamide-co-N-isopropylmaleamic acid-co-10-undecenoic acid (PNIPAAm-co-NIPMMA-co-UA) entities as hydrophilic domains as well as carrying 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) residues for electron spin resonance (ESR) labeling is reported. The lower critical solution temperature (LCST) of the copolymer was determined by optical absorbance measurements. The LCST was pH dependent and varied in a narrow practical range, 35.4 °C at pH 5.0, 37.5 °C at pH 6.5 and 39.4 °C at pH 7.4, which was below, near and above nominal physiological temperature respectively. The assembly of the copolymer into micelles in aqueous solution at temperatures below the LCST was confirmed by FT-IR, (1)H NMR and fluorescence spectroscopy. It is demonstrated that the anticancer drug, 5-fluorouracil (5-FU) can be loaded effectively within the polymeric micelles and released in response to environmental stimuli- namely, pH and temperature.  相似文献   

6.
甲基丙烯酸N,N-二甲氨基乙酯的均聚物(PDMAEMA)在水中的溶解性具有温敏性,即低温溶解、高温不溶,而且其低临界溶液温度(LCST)与pH密切相关.本文重点考察了PDMAEMA水溶液在不同温度、pH值、溶液离子强度时的相转变特性,并研究了水溶液中乳化剂对PDMAEMA的疏水相互作用和增溶稳定作用.将PDMAEMA的温敏相转变行为同有关乳液的稳定性相关联,揭示了改善乳液稳定性的内在机制.  相似文献   

7.
The photo‐induced association and dissociation of poly(sodium acrylate) containing a small amount of photoresponsive malachite green (MG) in aqueous solution were studied. It is known that MG dissociates into ion pairs under UV irradiation to produce the green triphenylmethyl cation. The cation thermally recombines with its counter anion to regenerate the colorless neutral compound. The random copolymer of acrylic acid with 0.05 mol % of MG monomer [P(A/MG0.05)] was soluble in aqueous 0.01 M NaCl at pH 12 as a unimer due to electrostatic repulsion between carboxylate pendent groups when the MG moieties were in the neutral form. On the other hand, these MG groups were converted to the cationic form on UV irradiation, leading to polymer aggregation driven by electrostatic interactions between the cationic MG and anionic carboxylate pendent groups. These aggregates could be dissociated by heating in the dark, as the cationic MG reverted to its neutral form, eliminating these attractive electrostatic interactions. The association and dissociation of the copolymer was monitored by dynamic light scattering (DLS). When the salt concentration in aqueous solutions of P(A/MG0.05) was increased from 0.01 to 0.5 M at pH 12, no aggregation was observed on UV irradiation because of ionic screening of the aforementioned electrostatic interactions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Herein we describe a new strategy for producing micelles with mixed coronal chains. This method involves attachment of an atom transfer radical polymerization (ATRP) initiator at the interface of a micelle and preparation of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes at the interface by a "grafting from" method. Poly(ethylene glycol)- block-polystyrene (PEG- b-PS) diblock copolymer was achieved by ATRP. After the sulfonation reaction PS blocks were partly sulfonated. In aqueous solution at low pH the sulfonated block copolymer self-assembled into micelles with PS cores and PEG coronae and sodium 4-styrenesulfonate groups were distributed at the interfaces of the micelles. An ATRP initiator consisting of a quaternary ammonium salt moiety and a 2-bromo-2-methyl propionate moiety was ion exchanged onto the interface of the micelle. ATRP of DMAEMA was initiated at the interface, and micelles with PEG/PDMAEMA mixed coronal chains were prepared by ATRP. The structures of the micelles were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and zeta potential measurements. The size and morphology of the micelles were controlled by pH in aqueous solution. At high pH, PDMAEMA brushes collapse, forming nanodomains on the surface of the micelles. PDMAEMA brushes in the coronae of the micelles could be used as a template for preparation of gold nanoparticles.  相似文献   

9.
To mimic the three-dimensional (3-D) globular architecture resulting from the precise positioning of hydrophobic/hydrophilic domains (blocks) of naturally occurring proteins, water-soluble linear and star homopolymers of N,N'-dimethylacrylamide (DMA) were synthesized with prescribed molecular weights via reversible addition-fragmentation chain transfer (RAFT) polymerization and subsequently used as macro chain transfer agents for block copolymerization with N-isopropylacrylamide (NIPAM). For the star block copolymers, the interior block consisted of NIPAM while the exterior block was DMA. Since polyNIPAM thermally switches from hydrophilic to hydrophobic, the 3-D solution conformations of the polymers were studied as a function of temperature using differential scanning calorimetry (DSC), static light scattering (SLS), and dynamic light scattering (DLS). The polymers were observed to form monodisperse aggregates in an aqueous pH 4 buffer solution when heated above the lower critical solution temperature (LCST) of polyNIPAM. The temperature at which the polymers aggregated and the size of the aggregates were dependent on the NIPAM block length and the core architecture. A simple model based on an optimal area per headgroup was used to analyze our experimental findings and was useful for predicting the final size and molecular weight of the aggregates formed.  相似文献   

10.
The synthesis and self‐assembly properties in aqueous solutions of novel amphiphilic block copolymers composed of one hydrophilic, pH and temperature responsive poly(dimethyl amino ethyl methacrylate) (PDMAEMA) block and one weakly hydrophobic, water insoluble, potentially thermoresponsive poly(hydroxy propyl methacrylate) (PHPMA) block, are reported. The block copolymers were prepared by RAFT polymerization and were molecularly characterized by size exclusion chromatography, NMR, and FTIR spectroscopies. The PDMAEMA‐b‐PHPMA amphiphilic block copolymers self‐assemble in different nanostructured aggregates when inserted in aqueous media. The effects of different solubilization protocols, as well as the effects of solution temperature and pH on the structure of the aggregates, are studied by light scattering and fluorescence spectroscopy measurements. Experimental results indicate that there is a number of solution preparation and physicochemical parameters that allow the control and manipulation of the structure and thermoresponsive properties of PDMAEMA‐b‐PHPMA aggregates in aqueous media. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1962–1977  相似文献   

11.
陈韩婷  樊晔  方云 《物理化学学报》2001,30(7):1290-1296
从N-异丙基丙烯酰胺(NIPAM)和丙烯酸(AA)单体合成了一种全亲水无规共聚物P(NIPAM-co-AA),实验发现该聚合物在水相中可以产生pH或温度双重刺激响应性自组装. 采用透射电子显微镜(TEM)观察了自组装体的形貌,采用动态光散射(DLS)和静态光散射(SLS)观察了其粒径及粒径分布. 测定了该聚合物水溶液的最低临界溶解温度(LCST)及其zeta 电位随pH的变化,通过分析NIPAM和AA两种链节的质子化状态随温度和pH变化的趋势,阐释了其在水相中产生双重响应性自组装的推动力;并结合傅里叶红外(FT-IR)光谱测定自组装体表面富集基团的结果,进一步阐释了不同环境下自组装体的微结构. 这类全亲水无规共聚物的合成方法简单,具有pH和温度双重响应性,其全水相中的刺激响应性自组装行为在药物释放等方面具有潜在的应用价值.  相似文献   

12.
从N-异丙基丙烯酰胺(NIPAM)和丙烯酸(AA)单体合成了一种全亲水无规共聚物P(NIPAM-co-AA),实验发现该聚合物在水相中可以产生pH或温度双重刺激响应性自组装.采用透射电子显微镜(TEM)观察了自组装体的形貌,采用动态光散射(DLS)和静态光散射(SLS)观察了其粒径及粒径分布.测定了该聚合物水溶液的最低临界溶解温度(LCST)及其zeta电位随pH的变化,通过分析NIPAM和AA两种链节的质子化状态随温度和pH变化的趋势,阐释了其在水相中产生双重响应性自组装的推动力;并结合傅里叶红外(FT-IR)光谱测定自组装体表面富集基团的结果,进一步阐释了不同环境下自组装体的微结构.这类全亲水无规共聚物的合成方法简单,具有pH和温度双重响应性,其全水相中的刺激响应性自组装行为在药物释放等方面具有潜在的应用价值.  相似文献   

13.
We investigated, both experimentally and theoretically, the self-assembly behaviors of pH- and thermosensitive poly(L-glutamic acid)- b-poly(propylene oxide)-b-poly(L-glutamic acid) (PLGA-b-PPO-b-PLGA) triblock copolymers in aqueous solution by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), circular dichroism (CD), and self-consistent field theory (SCFT) simulations. Vesicles were observed when the hydrophilic PLGA block length is shorter or the pH value of solution is lower. The vesicles were found to transform to spherical micelles when the PLGA block length increases or its conformation changes from helix to coil with increasing the pH value. In addition, increasing temperature gives rise to a decrease in the size of aggregates, which is related to the dehydration of the PPO segments at higher temperatures. The SCFT simulation results show that the vesicles transform to the spherical micelles with increasing the fraction or statistical length of A block in model ABA triblock copolymer, which corresponds to the increase in the PLGA length or its conformation change from helix to coil in experiments, respectively. The SCFT calculations also provide chain distribution information in the aggregates. On the basis of both experimental and SCFT results, the mechanism of the structure change of the PLGA- b-PPO- b-PLGA aggregates was proposed.  相似文献   

14.
Block copolymers comprising thermosensitive poly(N-isopropylacrylamide) (PNIPAM) and hydrophobic poly(n-butyl acrylate) (PBA) blocks, were synthesized using the reversible addition-fragmentation chain transfer polymerization (RAFT), their thermosensitive behavior was studied by ultraviolet spectrophotometer (UV) and dynamic light scattering (DLS). The lower critical solution temperature (LCST) was strongly correlated to the hydrophobic/hydrophilic ratio of the copolymers. Their micellization and self-assembly behavior in dilute aqueous solution were studied by surface tension (SFT), DLS and TEM. The resulting block copolymers reversibly formed or deformed micellar assemblies during their LCSTs. The critical micelle concentration (CMC) was controlled by the composition of PBA and PNIPAM, indicating the successful formation of the block copolymers.  相似文献   

15.
A novel double brush‐shaped copolymer with amphiphilic polyacrylate‐b‐poly(ethylene glycol)‐b‐poly acrylate copolymer (PA‐b‐PEG‐b‐PA) as a backbone and thermosensitive poly(N‐isopropylacrylamide) (PNIPAM) long side chains at both ends of the PEG was synthesized via an atom transfer radical polymerization (ATRP) route, and the structure was confirmed by FTIR, 1H NMR, and SEC. The thermosensitive self‐assembly behavior was examined via UV‐vis, TEM, DLS, and surface tension measurements, etc. The self‐assembled micelles, with low critical solution temperatures (LCST) of 34–38 °C, form irregular fusiform and/or spherical morphologies with single, double, and petaling cores in aqueous solution at room temperature, while above the LCST the micelles took on more regular and smooth spherical shapes with diameter ranges from 45 to 100 nm. The micelle exhibits high stabilities even in simulated physiological media, with low critical micellization concentration (CMC) up to 5.50, 4.89, and 5.05 mg L?1 in aqueous solution, pH 1.4 and 7.4 PBS solutions, respectively. The TEM and DLS determination reveled that the copolymer micelle had broad size distribution below its LCST while it produces narrow and homogeneous size above the LCST. The cytotoxicity was investigated by MTT assays to elucidate the application potential of the as‐prepared block polymer brushes as drug controlled release vehicles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Organic/inorganic hybrid amphiphilic block copolymer poly(methacrylate isobutyl POSS)‐b‐poly(N‐isopropylacrylamide‐co‐oligo(ethylene glycol) methyl ether methacrylate) (PMAPOSS‐b‐P(NIPAM‐co‐OEGMA)) was synthesized via reversible addition–fragmentation chain transfer polymerization. The self‐assembly behavior of this block copolymer in aqueous solution was investigated by dynamic light scattering (DLS) and transmission electron microscopy. The results indicate that the novel block copolymer can self‐assemble into spherical micelles with PMAPOSS segment as the hydrophobic part and P(NIPAM‐co‐OEGMA) segment as the hydrophilic part. The temperature‐responsive characteristics of the assemblies were tested by UV–Vis spectra and DLS. Some factors such as the concentration, molecular weight, and copolymer generation that may affect the cloud point were studied systematically. The results reveal that this copolymer exhibits a sharp and intensive lower critical solution temperature (LCST). The essentially predetermined LCST can be conveniently achieved by adjusting the content of NIPAM or OEGMA domain. In addition, these novel hybrid micelles can undergo an association/disassociation cycle with the heating and cooling of solution and the degree of reversibility displaying a tremendous concentration dependence, as a novel organic/inorganic hybrid material with distinctive virtues can be potentially used in biological and medical fields, especially in drug nanocarriers for targeted therapy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The solution properties of random and block copolymers based on 2‐ethyl‐2‐oxazoline (EtOx) and 2‐nonyl‐2‐oxazoline (NonOx) were investigated in binary solvent mixtures ranging from pure water to pure ethanol. The solubility phase diagrams for the random and block copolymers revealed solubility (after heating), insolubility, dispersions, micellization as well as lower critical solution temperature (LCST) and upper critical solution temperature behavior. The random and block copolymers containing over 60 mol % pNonOx were found to be solubilized in ethanol upon heating, whereas the dissolution temperature of the block copolymers was found to be much higher than for the random copolymers due to the higher extent of crystallinity. Furthermore, the block copolymer containing 10 mol % pNonOx exhibited a LCST in aqueous solution at 68.7 °C, whereas the LCST for the random copolymer was found to be only 20.8 °C based on the formation of hydrophobic microdomains in the block copolymer. The random copolymer displayed a small increase in LCST up to a solvent mixture of 9 wt % EtOH, whereas further increase of ethanol led to a decrease in LCST, which is probably due to the “water‐breaking” effect causing an increased attraction between ethanol and the hydrophobic part of the copolymer. In addition, the EtOx‐NonOx block copolymers revealed the formation of micelles and dynamic light scattering demonstrated that the micellar size is increasing with increasing the ethanol content due to the enhanced solubility of EtOx. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 515–522, 2009  相似文献   

18.
An amphiphilic graft polyphosphazene (PNIPAm/EAB-PPP) composed of oligo-poly(N-isopropylacrylamide) (PNIPAm) as hydrophilic segments and ethyl 4-aminobenzoate (EAB) as hydrophobic groups was synthesized via ring-opening polymerization and subsequent substitution reaction. The molar ratio of the PNIPAm segment to EAB group was 1.85:0.15. The lower critical solution temperature (LCST) of copolymer was 32.6 degrees C as determined by turbidity method. Micellization behavior of PNIPAm/EAB-PPP in an aqueous phase was characterized by fluorescence technique, 1H NMR, dynamic light scattering (DLS) and transmission electron microscopy (TEM). The critical micelle concentration (CMC) of the graft copolymer in aqueous solution was 0.1mg/ml. The number-averaged particle size of spherical micelles was 80 nm at 25 degrees C with a narrow distribution. TEM also revealed that inter-micellar aggregation was induced in the micelle solution at temperature above LCST of graft copolymer. The thermosensitive PNIPAm/EAB-PPP micelles may be of help to regulate the loading and release of hydrophobic drugs.  相似文献   

19.
Nanostructured inverse hexagonal polyoxometalate composite films were cast directly from solution using poly(butadiene-block-2-(dimethylamino)ethyl methacrylate) (PB-b-PDMAEMA) diblock copolymers as structure directing agents for phosphomolybdic acid (H(3)[PMo(12)O(40)], H(3)PMo). H(3)PMo units are selectively incorporated into the PDMAEMA domains due to electrostatic interactions between protonated PDMAEMA and PMo(3-) anions. Long solvophilic PB chains stabilized the PDMAEMA/H(3)PMo aggregates in solution and reliably prevented macrophase separation. The choice of solvent is crucial. It appears that all three components, both blocks of the diblock copolymer as well as H(3)PMo, have to be soluble in the same solvent which turned out to be tetrahydrofuran, THF. Evaporation induced self-assembly resulted in highly ordered inverse hexagonal nanocomposite films as observed from transmission electron microscopy and small-angle X-ray scattering. This one-pot synthesis may represent a generally applicable strategy for integrating polyoxometalates into functional architectures and devices.  相似文献   

20.
张文建  范溦  李敏  洪春雁  潘才元 《化学学报》2012,70(16):1690-1696
含二硫键的自引发单体与2-(2-甲氧基乙氧基)乙基甲基丙烯酸酯(MEO2MA)进行自缩合乙烯基共聚合得到超支化PMEO2MA(H-PMEO2MA). 以它作大分子引发剂, 引发二甲氨基乙基甲基丙烯酸酯(DMAEMA)进行原子转移自由基聚合, 合成了具有温度、pH以及氧化还原多重响应性的超支化星形聚合物H-PMEO2MA-star-PDMAEMA. 证明了H-PMEO2MA有低临界溶液温度(LCST); 研究了PDMAEMA 链段的长度和溶液的pH值对超支化星形聚合物的LCST的影响. 当H-PMEO2MA-star-PDMAEMA水溶液温度从2 ℃升高至室温, H-PMEO2MA变成疏水性而发生聚集, 形成以H-PMEO2MA为核, PDMAEMA为壳的胶束. 在胶束形成过程中, 将尼罗红装载到这种聚合物胶束中, 形成释药系统, 研究了pH、氧化还原响应性释药性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号