首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
This study aims to analyze thermal stability and make a rheological assessment of sunflower oil produced in the Northeast of Brazil, resulting from the pyrolysis process. Oil samples were submitted to thermal degradation and the reaction was evaluated by the thermogravimetric technique, at temperatures between 30 and 900?°C. Apparent activation energy was determined using the model-free kinetics theory. The coaxial cylinder system at operating temperature of 40?°C was used to obtain rheological parameters. Oil was characterized by gas chromatography. The lipid profile of the oil exhibited good quality. The activation energy of the sunflower oil was 201.2?kJ?mol?1. Results showed the influence of physical?Cchemical characteristics of vegetable oil on the thermal decomposition process. Rheological analyses confirmed Newtonian rheological behavior. The high potential of the ??Catissol?? variety produced in Northeast Brazil as raw material for biofuel production using pyrolysis was also demonstrated.  相似文献   

2.
4-amino-3-aminopyrazole-8-trinitropyrazolo-[5, 1-c] [1, 2, 4]triazine (PTX, C5H2N8O6) has good detonation performance, thermal stability and low mechanical sensitivity, which endow it with good development prospects in insensitive ammunition applications. To study the effects of polymerization on the decomposition of PTX, the reaction processes of PTX at different conditions were simulated by quantum chemistry and molecular dynamics methods. In this paper, the effects of polymerization on the decomposition of PTX were studied in terms of species information, reaction path of PTX, bond formation and bond cleavage, evolution of small molecules and clusters, and kinetic parameters at different stages. The results show that under the high-temperature and high-pressure conditions, the initial reaction path of unimolecular PTX in the thermal decomposition is mainly the cleavage of C−NO2 bonds. At the same time, there are many polymerization reactions in thermal decomposition process, which may greatly affect the reaction rate and path. The higher the degree of polymerization, the larger equilibrium value of potential energy, the less energy release of thermal decomposition. Compared with the activation energy of other explosives, the activation energy of PTX is higher than that of β-HMX and lower than that of TNT.  相似文献   

3.
Combined TG/DTA techniques have been used to study the thermal decomposition of R3PAuCN (where Ris ethyl, cyclohexyl, o-tolyl, m-tolyl, p-tolyl, allyl, cyanoethyl,1-naphthyl and phenyl) complexes. It was observed that all of these complexes underwant decomposition cum redox reactions in the range of 200–600oC with evolution of both transligands, which are phosphine and cyanide, leaving metallic gold as a residue. The thermal decomposition of o-Tol3PAuCN has revealed that this is a stepwise process. In the first step decomposition takes place with evolution of phosphine and generation of AuCN, which in second step undergoes a redox reaction to produce metallic gold. The DTA curves have also confirmed these results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The thermal decomposition of tert‐butyl peroxide is investigated utilizing both the column and the injection port of a commercial gas chromatograph (GC) as chemical reactors. Using the injector liner as the reactor, the chromatographic peak areas of the reactant, measured at various injector temperatures, are used in the determination of the activation energy of the decomposition (Ea). With the column serving as the reactor, both the reactant peak areas and the product peak shapes are similarly utilized for this purpose. Values of Ea obtained using different mathematical treatments for each of the three approaches are found to range from 115 to 164 kJ/mol. Of these methods, the column reactor approach utilizing peak area measurements (referred to as PACR, for “peak area, column reactor”) is found to be far superior in terms of its speed, robustness, and its accuracy in determining Ea. The PACR method's effectiveness can be largely attributed to the mathematical treatment that is described in the approach. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 386–393, 2004  相似文献   

5.
Summary A combination of high resolution thermogravimetric analysis coupled to a gas evolution mass spectrometer has been used to study the thermal decomposition of liebigite. Water is lost in two steps at 44 and 302°C. Two mass loss steps are observed for carbon dioxide evolution at 456 and 686°C. The product of the thermal decomposition was found to be a mixture of CaUO4 and Ca3UO6. The thermal decomposition of liebigite was followed by hot-stage Raman spectroscopy. Two Raman bands are observed in the 50°C spectrum at 3504 and 3318 cm-1 and shift to higher wavenumbers upon thermal treatment; no intensity remains in the bands above 300°C. Three bands assigned to the υ1 symmetric stretching modes of the (CO3)2- units are observed at 1094, 1087 and 1075 cm-1 in agreement with three structurally distinct (CO3)2- units. At 100°C, two bands are found at 1089 and 1078 cm-1. Thermogravimetric analysis is undertaken as dynamic experiment with a constant heating rate whereas the hot-stage Raman spectroscopic experiment occurs as a staged experiment. Hot stage Raman spectroscopy supports the changes in molecular structure of liebigite during the proposed stages of thermal decomposition as observed in the TG-MS experiment.  相似文献   

6.
Summary Two different processes of the thermal decomposition of synthetic bayerite, i.e., the non-isothermal decomposition of mechanically ground sample in flowing N2 and the controlled rate thermal decomposition of crystalline bayerite under vacuum, were investigated comparatively. In comparison with the conventional non-isothermal decomposition of crystalline bayerite in flowing N2, the reaction temperature of the thermal decomposition was lowered by the individual effects of mechanical grinding of the sample and the reaction rate control. These decomposition processes indicated similar behavior characterized by the restricted changes of the specific surface area during the course of decomposition reaction and the formation of an amorphous alumina as the decomposition product. Different thermal behaviors were observed for those amorphous Al2O3 produced by the respective decomposition processes.  相似文献   

7.

The trans and cis form of 4-(4-methoxystyryl)pyridine N-oxide were studied. The spectral characteristics of cis-4-(4-methoxystyryl)pyridine N-oxide were determined in acetonitrile. The melting and thermal decomposition processes of the trans and cisforms of 4-(4-methoxystyryl)pyridine N-oxide were studied by thermochemical methods. It was establish that the thermal decomposition of 4-(4-methoxystyryl)pyridine N-oxide begins with the cleavage of the bond between the pyridine and benzene rings.

  相似文献   

8.
The eight solid complexes of zinc with L--methionine or L--histidine were prepared. The thermal decomposition processes of these complexes were determined by means of TG-DTG. The results show that their decomposition processes can be divided into three steps except for the complex Zn(Met)2 the decomposition of which is completed in one step. All the final products are ZnO.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

9.
The simvastatin (SV) is nowadays produced semi-synthetically from lovastatin. It’s one of the statins most commonly used to treat several forms of hypercholesterolemia. This study aimed to apply the thermal characterization of the SV raw material using thermoanalytical techniques and its degradation products by Pyrolysis coupled to Gas chromatography/Mass spectrometry (Pyr-GC/MS). It was studied three samples of SV (SVA, SVB, and SVC). The results showed thermal behavior differences of the samples during the melting process transition and the activation energies (E a) of the thermal decomposition, which were correlated to the thermal stability of them. The first decomposition step of Pyr-GC/MS showed two new compounds of m/z 284 and 207, in proportions dependents according to the pyrolysis temperature.  相似文献   

10.
In this study, the characteristic behavior of a rotating arc was investigated. Various modes, depending on the electric power supplied, can be observed in a rotating arc. Each mode produces different discharge characteristics and thermal environments and, accordingly, chemical processes hosted in the plasma reaction volume can be controlled differently in each mode. General thermal to non-thermal transitions observed in a gliding arc are based on the longitudinal expansion of the arc column. In a rotating arc, the reverse transition or non-thermal to thermal transition can be hosted by controlling the reactor geometry. The reverse transition can be achieved by self-adjustment of the arc column where longitudinal expansion of the arc column is confined. The reverse transition enhances the conversion efficiency of electric power to thermal energy. Then, optimization of thermal activation was obtained by controlling the mode of operation, and it was verified using the NH3 decomposition reaction.  相似文献   

11.
The primary fragmentation processes in the thermal decomposition of polymers were studied in detail on a series of structurally related polyureas by direct pyrolysis with a mass spectrometer. Our results indicate that polyureas I–III undergo a quantitative depolycondensation process analogous to that observed for N-monosubstituted polyurethanes. The thermal decomposition of polyureas IV–VI proceeds by intramolecular hydrogen transfer processes that occur at higher temperatures with respect to depolycondensation. Polycarboxypiperazine VI is decomposed by a single-stage decomposition mechanism that leads to fragments with amino end groups and carbon oxide.  相似文献   

12.
Some Miocene‐fossil wood of Pinus griffithii preserved as lignified wood in brown coal was found in an open coalmine in Xundian of Yunnan Province, China. To explore its chemical components, here we show the palaeophytochemical investigation of this Pliocene‐fossil wood of P. armandii, resulting in the isolation of 11 compounds ( 1–11 ) including one new compound named 3,3‐dimethoxy‐24‐ethyl‐cholestan ( 1 ) by liquid column chromatography. Furthermore, sixteen volatiles were detected from this fossil wood by gas chromatography‐mass spectrometry (GC‐MS). These structures of 11 compounds were elucidated by analysis of their MS, 1D and 2D‐NMR spectra, and comparison with published data.  相似文献   

13.
Liu  Haibo  Shu  Daobing  Sun  Fuwei  Li  Qian  Chen  Tianhu  Xing  Bobo  Chen  Dong  Qing  Chengsong 《Journal of Thermal Analysis and Calorimetry》2019,136(3):1315-1322

In this study, Mn-substituted siderites with different substitution amounts were prepared and characterized by using XRD (X-ray diffraction), TEM (transmission electron microscope), TG and DTG (thermogravimetry and derivative thermogravimetry) and Raman spectroscopy. The effect of Mn substitution on the crystal structure of siderite and thermal decomposition processes of synthetic siderite was investigated. The substitution of Mn for Fe in the crystal structure of siderite resulted in an increase in a and c dimensions from 4.702 and 15.374 to 4.718 and 15.43 Å as the substitution amount increased from 0 to 7.4%, respectively. The substitution of Mn also decreased the crystallinity of siderite. The thermal decomposition of synthetic siderite took place at approximately 350 °C. However, the substitution of Mn for Fe increased the decomposition temperature and improved the activation energy (Ed) values from 126.3, 155.7, 156.8 to 164.5, 167.6, 170.3 kJ mol−1 when Mn substitution increased from 0 to 7.4 mol%.

  相似文献   

14.
The kinetics and mechanism of the thermal decomposition of n-propylsilane have been studied by the single pulse shock tube-comparative rate technique at pressures around 4700 torr between 1095–1240 K. The primary dissociation processes are 1,1 and 1,2 H2 elimination with ø1,1 ? 0.75 and ø1,2 ? 0.25, respectively. Subsequent decompositions of the primary process product, n-propylsilylene, to propylene and ethylene is complete even in the presence of excess butadiene. Possible mechanistic paths for these decompositions are discussed and an activation energy range of 30 ± 4 kcal is established for both processes. Induced decomposition via silylene chains accounts for 36–46% of the overall reaction in the uninhibited decomposition of n-propylsilane. The silylene chains are quenched in excess butadiene, and studies under maximum inhibition give overall decomposition kinetics of, log k(nPrSiD3, s?1) = 15.26–65,300 ± 1950 cal/2.303. Computer modeling results of the overall reaction both in the absence and presence of butadiene are also presented and shown to be in acceptable agreement with the experimental observations.  相似文献   

15.
In the present study, thermal decomposition of mono- and di-azocalix[4]arene derivatives (A1A8 and B1B8) was investigated by means of thermogravimetry (TG), differential thermal analysis (DTA) and derivative thermogravimetry (DTG). The exclusion of methanol, hydrolysis of benzoyl ester and methyl ketone groups in lower rim, and decomposition of azo groups in upper rim have occurred during thermal analysis, consecutively. The thermal decomposition degrees amount of volatile pyrolysis products were determined in air atmosphere using TG, DTA and DTG curves. In conclusion, the thermal analyses of azocalix[4]arenes demonstrated that its stability depends on the substituted groups and their positions in the calix[4]arene structure.  相似文献   

16.
The thermal and thermooxidative behavior of sodium salt of hyaluronic acid (HA) and its n-hexyl, n-decyl, n-tetradecyl and n-hexadecyl ether derivatives having an equal degree of substitution have been studied by means of differential scanning calorimetry (DSC) and thermogravimetry (TG). Derivatives were prepared by a substitution of H atom at the OH bound to the sixth C of N-acetyl-D-glucosamin of HA unit by n-hexyl, n-decyl, n-tetradecyl and n-hexadecyl chains. Both thermal and thermooxidative degradation of HA and derivatives resulted in multistep process. The main interest of this work was focused on processes occurring in the course of the first decomposition step. Experimental DSC data showed lower stability of derivatives and, remarkably lower heat evolution in comparison with original HA. On the other hand, TG measurement recorded lower mass loss for derivates which indicated appearance of new types of crosslinking reactions. Oxidative stability was evaluated by means of DSC that provided the induction period and the protection factor determination. Derivates showed remarkably lower stability in comparison with original HA; comparing each other, the highest oxidation stability showed n-decyl and n-tetradecyl derivates.  相似文献   

17.
Summary Prediction of the thermal decomposition pathway of the metal complexes is very important from the theoretical and experimental point of view to determine the properties and structural differences of complexes. In the prediction of the decomposition pathways of complexes, besides the thermal analysis techniques, some ancillary techniques e.g. mass spectroscopy is also used in recent years. In the light of the molecular structures and fragmentation components, it is believed that the thermal decomposition pathway of most molecules is similar to the ionisation mechanism occurring in the mass spectrometer ionisation process. In this study, the thermal decomposition pathway of [Ni(dmen)2(H2O)2](acs)2 complex have been predicted by the help of thermal analysis data (TG, DTG and DTA) and mass spectroscopic fragmentation pattern. The complex was decomposed in four stages: a) dehydration between 84-132°C, b) loss of N,N'-dimethylethylenediamine (dmen) ligand, c) decomposition of remained dmen and acesulfamato (acs) by releasing SO2, d) burning of the organic residue to resulting in NiO. The volatile products observed in the thermal decomposition process were also observed in the mass spectrometer ionisation process except molecular peak and it was concluded that the ionisation and thermal decomposition pathway of the complex resembles each other.  相似文献   

18.
Hydrogen peroxide (H2O2) is popularly employed as a reaction reagent in cleaning processes for the chemical industry and semiconductor plants. By using differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2), this study focused on the thermal decomposition reaction of H2O2 mixed with sulfuric acid (H2SO4) with low (0.1, 0.5 and 1.0 N), and high concentrations of 96 mass%, respectively. Thermokinetic data, such as exothermic onset temperature (T 0), heat of decomposition (ΔH d), pressure rise rate (dP/dt), and self-heating rate (dT/dt), were obtained and assessed by the DSC and VSP2 experiments. From the thermal decomposition reaction on various concentrations of H2SO4, the experimental data of T 0, ΔH, dP/dt, and dT/dt were obtained. Comparisons of the reactivity for H2O2 and H2O2 mixed with H2SO4 (lower and higher concentrations) were evaluated to corroborate the decomposition reaction in these systems.  相似文献   

19.
The thermal decomposition of structurally related N–H and N,N′-disubstituted polyureas (Table I) and their mixtures with ammonium polyphosphate (APP) was investigated by thermogravimetry (TG) and direct pyrolysis in a mass spectrometer (MS). The N–H polyureas (IV–VI) undergo a quantitative depolymerization process with the formation of oligomers with amine and isocyanate end groups. In contrast, the thermal degradation of the N,N′-disubstituted polyureas (I–III) proceeds by a different mechanism as a function of their chemical structure. The addition of APP lowers the thermal stability of the N,N′-disubstituted polyureas, whereas that of the N–H polyureas is unaltered. However, our data show that APP does not change the nature of the pyrolytic products. The destabilizing effect of the additive can be attributed to the catalytic action of the acid species formed by its thermal decomposition.  相似文献   

20.
New transition metal compounds of the general formula Ln(NO3)3·2[N4(CH2)6]·nH2O, where Ln = La, Nd, Sm, Gd, Tb, Dy, Er, Lu, and n = 7-12, were obtained. The compounds and the gases evolved in the course of their thermal decomposition were characterised by thermogravimetric analysis. The measurements were carried out in air and argon environment in order to compare the intermediate products, final products and the mechanism of the thermal decomposition. The combined TG-MS system was used to identify the main volatile products of thermal decomposition and fragmentation processes of the obtained compounds. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号