首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In this paper, we study the electrowetting character on ZnO nanowires. We grow the ZnO nanowires on indium tin oxide (ITO) by a hydrothermal method, and the ZnO nanowires surface is further hydrophobized by spin-coating Teflon. Such a prepared surface shows superhydrophobic properties with an initial contact angle 165°. When the applied external voltage between the ITO and the sessile droplet is less than 50 V, the contact angle continuously changed from 165° to 120°, and exhibits instant reversibility. For a slightly higher voltage, a mutation of the contact angle changing to 100° was observed and the contact angle was not reversible after removing the applied voltage, which indicates a transition from non-wetting state to wetting state. Further increasing of the applied voltage, the apparent contact angle decreased to an invariable value 70°, and electrical breakdown emerged synchronously.  相似文献   

2.
We consider the quasi-static energy of a drop on a textured hydrophilic surface, with taking the contact angle hysteresis (CAH) into account. We demonstrate how energy varies as the contact state changes from the Cassie state (in which air is trapped at the drop bottom) to the Wenzel state (in which liquid fills the texture at the drop bottom) assuming that the latter state nucleates from the center of the drop bottom. When the textured substrate is hydrophilic enough to allow spontaneous penetration of liquid film of the texture thickness, the present theory asserts that the drop develops into an experimentally observed state in which a drop looks like an egg fried without flipped over (sunny-side up) with a well-defined radius of "the egg yolk." Otherwise, the final contact state of the drop becomes like a Wenzel state, but with the contact circle smaller than the original Wenzel state due to the CAH. We provide simple analytical estimations for the yolk radius of the "sunny-side-up" state and for the final radius of the contact circle of the pseudo-Wenzel state.  相似文献   

3.
This paper reports experimental investigations on the electrowetting behavior of ionic liquids in comparison with aqueous electrolytes, which is one of the important research topics in optofluidics. The effect of applied voltage on the contact angle is reported in detail. In addition, the liquid–solid material interfacial tension and the thickness of insulating layer are estimated under certain conditions. Related conclusions are valuable in the field of future electrowetting applications.  相似文献   

4.
The surface hydrophobicity of polystyrene-nanoparticle nanocomposites has been investigated as a function of the nanoparticle content. The addition of hydrophobically coated nanoparticles in polystyrene increased the contact angle θ of a water drop with respect to that on polystyrene surface due to change of surface composition and/or surface roughness. When the nanoparticles dispersed well in the polymer, cos θ decreased linearly with increasing amount of nanoparticles indicating a composite surface consisting of smooth polystyrene regions and rough nanoparticle regions. In case of formation of nanoparticle aggregates in polystyrene, cos θ decreased sharply at a critical concentration of nanoparticles. The observed behaviour was modeled in terms of a transition from Wenzel regime to Cassie-Baxter regime at a critical roughness length scale below which the Laplace pressure prevented the penetration of the water drop into the surface undulations. We argue that multiple length scales are needed below the critical roughness length scale to increase the contact angle further by decreasing the fraction of surface area of solid material (increasing the fraction of surface area of air) underlying the water drop.  相似文献   

5.
Electrowetting: Electrocapillarity, saturation, and dynamics   总被引:1,自引:0,他引:1  
Electrowetting is an electrocapillary phenomenon, i.e. the surface charge generated at the solid-liquid interface through an external voltage improves the wettability in the system. The Young-Lippmann equation provides the simplest thermodynamic framework and describes electrowetting adequately. Saturation, i.e. the reduced or nullified effectiveness of the external voltage below a threshold contact angle value, was and remains the most controversial issue in the physics of electrowetting. A simple estimation of the limits of validity of the Young model is obtained by setting the solid-liquid interfacial tension to zero. This approach predicts acceptably the change in electrowetting mechanism but not the minimal value of the contact angle achievable during electrowetting. The mechanism of saturation is, in all probability, related to charge injection into the dielectric layer insulating the working electrode but physical details are scarce. Surface force and spectroscopic techniques should be deployed in order to improve our understanding of the surface charging of insulators immersed in conductive liquids. Electrowetting in solid-liquid-liquid systems is generally more effective and robust. Electrowetting offers new ways of studying the dynamics of liquid movement as it allows selective changes in the wettability of the system.  相似文献   

6.
采用特定的“导电基片/绝缘膜层”微透镜阵列内芯材料,研究其表面的介质上电润湿(EWOD)特性。利用图像采集与数据处理方法测量了0~60V电压范围内硫酸钠水溶液液滴在“不锈钢基片/Parylene绝缘层”芯片表面的接触角变化数据,通过EWOD理论模型计算得到硫酸钠溶液的表面张力值,此值与理论值相吻合。进而计算了内芯与液滴的界面张力,这种方法可用于一般固液界面张力的测量。  相似文献   

7.
赵瑞  梁忠诚 《中国物理 B》2016,25(6):66801-066801
Electrowetting, as a well-known approach to increasing droplet wettability on a solid surface by electrical bias, has broad applications. However, it is limited by contact angle saturation at large voltage. Although several debated hypotheses have been proposed to describe it, the physical origin of contact angle saturation still remains obscure. In this work, the physical factors responsible for the onset of contact angle saturation are explored, and the correlated theoretical models are established to characterize electrowetting behavior. Combination of the proper 3-phase system employed succeeds in dropping the saturating contact angle below 25°, and validates that the contact angle saturation is not a result of device-related imperfection.  相似文献   

8.
A novel ZnS hierarchical structure composed of nanorod arrays with branched nanosheets and nanowires grown on their upside walls, was synthesized over Au-coated silicon substrate via chemical vapor deposition technique. Contact angle and sliding angle of this hierarchical film with no surface modification were measured to be about 153.8° and 9.1° for 5 μl water droplets. Self-cleaning behavior and dynamic water-repelling performance were clearly demonstrated. In addition, electrowetting transition phenomenon from superhydrophobic to hydrophilic state happened when a critical bias ∼7.0 V was applied. Below this threshold voltage, the contact angle change is little. This work for the first time reports the creation of ZnS superhydrophobic surface and could enrich its research field as surface functional materials.  相似文献   

9.
A numerical scheme based on the lattice Boltzmann method, which can simulate the electrowetting of an electrolyte droplet and flow is proposed. The accuracy and robustness of this model are demonstrated by numerically simulating a droplet on a flat surface, on which the cosine of contact angle shows parabolic increase consistent with the Lippmann-Young equation. This scheme is expected to the application in the study of the mechanism of electrowetting on dielectric and electrowetting fluid in complex geometry.  相似文献   

10.
We investigate the spreading at variable rate of a water drop on a smooth hydrophobic substrate in an ambient oil bath driven by electrowetting. We find that a thin film of oil is entrapped under the drop. Its thickness is described by an extension of the Landau-Levich law of dip coating that includes the electrostatic pressure contribution. Once trapped, the thin film becomes unstable under the competing effects of the electrostatic pressure and surface tension and dewets into microscopic droplets, in agreement with a linear stability analysis. Our results recommend electrowetting as an efficient experimental approach to the fundamental problem of dynamic wetting in the presence of a tunable substrate-liquid interaction.  相似文献   

11.
采用一种改进的分水岭变换算法研究导电液滴在微流控芯片表面介质上电润湿效应,获得了一个单像素宽度、连续的液滴边缘轮廓,得到了导电液滴在芯片表面的接触角随外加电势的变化规律,进而计算了导电液体的表面张力。相关结论为新型微流控光学变焦透镜阵列器件的设计和研制提供了依据。  相似文献   

12.
A theory of electrowetting is developed for systems containing an interface between two immiscible electrolytic solutions. Laws for the dependence of contact angle on electrode potential are presented. Ionic impermeability of the liquid-liquid interface and nonlinear double-layer responses rationalize observed phenomena such as contact-angle saturation and droplet contraction or detachment. The theoretical results can be applied to design new, precisely controllable microfluidic devices.  相似文献   

13.
The resonant modes of sessile water drops on a hydrophobic substrate subjected to a small-amplitude lateral vibration are investigated using computational fluid dynamic (CFD) modeling. As the substrate is vibrated laterally, its momentum diffuses within the Stokes layer of the drop. Above the Stokes layer, the competition between the inertial and Laplace forces causes the formation of capillary waves on the surface of the drop. In the first part of this paper, the resonant states of water drops are illustrated by investigating the velocity profile and the hydrostatic force using a 3d simulation of the Navier-Stokes equation. The simulation also allows an estimation of the contact angle variation on both sides of the drop. In the second part of the paper, we investigate the effect of vibration on a water drop in contact with a vertical plate. Here, as the plate vibrates parallel to gravity, the contact line oscillates. Each oscillation is, however, rectified by hysteresis, thus inducing a ratcheting motion to the water droplet vertically downward. Maximum rectification occurs at the resonant states of the drop. A comparison between the frequency-dependent motion of these drops and the variation of contact angles on their both sides is made. The paper ends with a discussion on the movements of the drops on a horizontal hydrophobic surface subjected to an asymmetric vibration.  相似文献   

14.
Samples of wind turbine blade surface have been covered with a superhydrophobic coating made of silica nanoparticles embedded in commercial epoxy paint. The superhydrophobic surfaces have a water contact angle around 152°, a hysteresis less than 2° and a water drop sliding angle around 0.5°. These surfaces are water repellent so that water drops cannot remain motionless on the surface. Examination of coated and uncoated surfaces with scanning electron microscopy and atomic force microscopy, together with measurements of water contact angles, indicates that the air trapped in the cavity enhances the water repellency similarly to the lotus leaf effect. Moreover, this new coating is stable under UVC irradiation and water pouring. The production of this nanoscale coating film being simple and low cost, it can be considered as a suitable candidate for water protection of different outdoor structures.  相似文献   

15.
Electrowetting display technology is realized by tuning the surface energy of a hydrophobic surface by applying a voltage based on electrowetting mechanism. With the rapid development of the electrowetting industry, how to analyze efficiently the quality of an electrowetting display screen has a very important significance. There are two kinds of dead pixels on the electrowetting display screen. One is that the oil of pixel cannot completely cover the display area. The other is that indium tin oxide semiconductor wire connecting pixel and foil was burned. In this paper, we propose a high-resolution and intelligent dead pixel detection scheme for an electrowetting display screen. First, we built an aperture ratio–capacitance model based on the electrical characteristics of electrowetting display. A field-programmable gate array is used as the integrated logic hub of the system for a highly reliable and efficient control of the circuit. Dead pixels can be detected and displayed on a PC-based 2D graphical interface in real time. The proposed dead pixel detection scheme reported in this work has promise in automating electrowetting display experiments.  相似文献   

16.
喷雾冷却具有散热能力强、冷却工质需求量小等优点,在解决电子器件散热方面具有广阔的应用前景。纯水中添加醇类可以有效提升喷雾冷却性能。为进一步探索醇类添加剂强化喷雾冷却性能的机理,本文开展醇水混合溶液表面张力和接触角的实验测定研究。分别在水中加入不同浓度的乙醇、正丙醇、正丁醇、正戊醇、正己醇、正庚醇和正辛醇等醇类,利用悬滴法探究醇类浓度对溶液的表面张力的影响规律;利用Young-Laplace坐滴法探究醇类浓度对接触角的影响规律。结果表明,水中添加醇类后表面张力降低,且其随醇类溶质浓度的增加而变小,且其下降速率均随浓度的增加越来越慢;添加低醇类添加剂均可降低溶液的接触角,而高醇类接触角随浓度变化没有明显的变化规律。  相似文献   

17.
In order to study the influence of plasma on electrode, atmospheric pressure dielectric barrier discharge (DBD) air plasma is employed here to treat copper electrode surface. Plasma is generated between the parallel plate electrodes by means of high voltage produced by a high-frequency power supply with transformer. Electrode surface alterations induced by air plasma are investigated by using field emission scanning electron microscope (FE-SEM), X-ray energy dispersion spectroscopy (EDS) and contact angle measurement. The results show that DBD air plasma removes the organic contaminant on surface and causes electrode surface roughness, oxidization and nitridation. In addition, surface wettability is also improved, as concluded from contact angle measurements.  相似文献   

18.
Dielectric barrier discharge (DBD) can modify the material surface and result in complicated physical and chemical reactions to improve the surface hydrophilicity, which is proved to be an effective method for surface modification. Compared with the traditional ac-excitation DBD, the DBD using unipolar pulses can avoid local overheat of microdischarges and can improve discharge efficiency under some conditions. In this paper, DBD excited by repetitive unipolar nanosecond generator was used to improve the hydrophobicity of Plexiglass (PMMA) surface by means of the interaction between air plasma and silicone oil. The output voltage had a rise time of 40 ns and a full width at half maximum of about 70 ns. The surface hydrophobicity of the PMMA, before and after the surface modification, was evaluated via the contact angle measurement under different experimental conditions. The values of the contact angle shown in this paper were the average of eight measured values, and the standard deviations were also calculated. The surface energy including polar and dispersion components was calculated using the measured average contact angles of distilled water and polyethyleneglycol. The results showed that, as the increase of the discharge voltage, the contact angle increased but the surface energy decreased. With the increase of treatment time, the water contact angle of the modified surface increased at the beginning, and it would reach to a maximum at 7.5 min treatment, and then decreased. The effect of pulse frequency on the modification results was different at various treatment times. In addition, the possible physical and chemical reaction among the DBD plasma, silicone oil and the PMMA surface was discussed.  相似文献   

19.
In this article, directional movements of drops on the ratchet-like superhydrophobic surfaces were observed. High-speed CCD images showed the caterpillar-like crawl of a drop on the inclined superhydrophobic surfaces as it rolled along the ridge of ratchet. In contrast, along the opposite direction, the movement of the drop only depended on the end of triple phase contact line while the front of contact line was pinned. The sliding angle (SA) measurements indicated that the ratchet-like superhydrophobic surfaces had directional drop retention traits. Moreover, the reduction of the rise angle ω1, the height d of the ratchet's ridge and the volume V of the drop can greatly enhance the directional difference of drop retention on the ratchet-like superhydrophobic surfaces. Therefore, it was concluded that the superhydrophobicity and the periodic ratchet-like microstructures were the keys to the directional drop sliding at one-dimensional level. We believe that these findings would be helpful to better understand the ratchet-like effect on the superhydrophobic surfaces and guide some novel engineering applications.  相似文献   

20.
We report a new high-frequency (>10 kHz) ac electrospray that is capable of generating micron-sized electroneutral drops. Unlike its dc counterpart, the drops are not ejected continuously from a sharp Taylor cone but intermittently from a resonating meniscus at the orifice. We attribute the resonant frequency to the capillary-inertia vibration time of the meniscus and the drop ejection to the Maxwell-Wagner electric stress at the drop tip, which is observed to reverse its direction across a crossover frequency. Above this frequency, the oppositely directed Maxwell-Wagner force causes the liquid to recede up the microneedle as an apparent electrowetting effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号