首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of [OsX2(HL)(L)] (1) {X = Cl or Br; HL = PhC(O)C(=NOH)Ph (HL1) or PhC(O)C(=NOH)Me (HL2)] with n-BuONO yields mononuclear [OsX(NO)(L1)2] (2) or binuclear [OsX2(NO)(L2)]22 (3) nitrosyls depending on L. The complexes are also obtained by reacting (1) with NaNO2 plus HCl. Molecular weight determinations are in agreement with mono- and binuclear formulations. The diamagnetic orange-red nitrosyls exhibit (NO) at ca. 1890 cm–1 indicating NO+ character of the bound nitrogen monoxide. In 1H-n.m.r. a single sharp L2 methyl signal is in line with the centrosymmetric geometry (4) of the binuclear nitrosyls. The complexes display both spin-allowed and -forbidden charge transfer transitions in the 1000–200 nm range. Both (2) and (3) are electroactive and reductions characteristic of mono- and binuclear compositions are observable on the negative side of s.c.e. They react smoothly with acetylacetone (acacH) in the presence of K2CO3 yielding K[Os(acamo)(L1)2] (5) and K[Os(acac)(acamo)(L2)] (6) [acamo = deprotonated MeC(O)C(=NOH)C(O)Me] respectively.  相似文献   

2.
[Pd(cod)(cotl)]ClO4 (cod = 1,5-cyclooctadiene, cotl = cyclooctenyl, C8H13 ) undergoes substitutions with multidentate N-heterocycles: 1,3-bis(benzimidazolyl)benzene (L1), 1,3-bis(1-methylbenzimidazol-2-yl)benzene (L2), 2,6-bis(benzimidazolyl)pyridine (L3) and 2,6-bis(1-methylbenzimidazol-2-yl)pyridine (L4) to yield mono/binuclear complexes: [Pd(cotl)(L1)(OClO3)], [Pd(cotl)(L)]ClO4 (L = L2 or L3) and [Pd(cotl)2(L4)](ClO4)2. Dihalobridged binuclear complexes [PdX(cotl)]2 (X = Cl or Br) undergo halogen bridge cleavages with the multidentate N-heterocycles to form binuclear complexes of the type [PdX(cotl)2L] (X = Cl or Br; L = L1, L2, L3 or L4). The complexes were characterized by elemental analyses, 1H-, 13C-n.m.r., i.r., far-i.r. and FAB-mass spectral studies.  相似文献   

3.
The preparation of the bidentate ligand 2, 11-bis(diphenylarsinomethyl)benzo-[c]-phenanthrene ( 1 ) is described. This ligand reacts with appropriate substrates to give mononuclear square planar complexes of type [MX2( 1 )] (M = Pd, Pt; X = Cl, Br, I) and [M′Cl(CO)( 1 )] (M′ = Rh, Ir) in which ligand 1 spans trans-positions. This is confirmed by the crystal structure of [PtCl2( 1 )]. 1H-NMR. spectra of the complexes are discussed and compared with those of model compounds trans-[MCl2( 12 )2] (M = Pd, Pt) and [M'Cl(CO)( 12 )2] (M′ = Rh, Ir; 12 = AsBzPh2).  相似文献   

4.
Hydrolysis and Halide Exchange of Pentahalogenomonocarbonyl Osmates(III) The aquo complexes [OsX4(CO)(H2O)]?, [OsX3(CO)(H2O)] and [OsX2(CO)(H2O)3]+, X ? Cl, Br, I, produced by the stepwise hydrolysis of [OsX5(CO)]2?, are isolated as pure solutions by ionophoresis and characterized by their absorption spectra. Due to stability of the monaquo complexes and the different trans-effect of the halides it is possible to prepare the mixed complexes [OsX4–nYn(CO)(H2O)]?, X ≠ Y = Cl, Br, I, n = 1–3, and for n = 2 the pure stereoisomers are formed. A systematic shift is found in charge-transfer bands to the shorter wavelengths when the halides are replaced by H2O, I by Br or Cl and Br by Cl.  相似文献   

5.
Two new cyano-bridged Cu(II)-Fe(II) binuclear complexes, [Cu(L1)Fe(CN)5(NO)] (I) [L1 = 1,3,6,8,11,14-hexaazatricyclo[12.2.1.18,11]octadecane and [Cu(L2)Fe(CN)5(NO)] · 2H2O (II) L2 = 1,3,6,9,11,14-hexaazatricyclo[12.2.1.16,9]octadecane, have been assembled and structurally characterized by spectroscopy and X-ray crystallography. Complex I crystallizes in the monoclinic crystalline system of space group P21/c, while complex II crystallizes in the monoclinic crystalline system of space group P21/n. These two complexes assume a binuclear structure in which the Fe2+ ion is in an octahedron environment and the Cu2+ ion is in a square-prism geometry environment.  相似文献   

6.
The reaction of CuCl2 · 2H2O and CdCl2 with di-(2-picolyl)sulfide (dps) leads to the formation of mononuclear copper(II) and binuclear cadmium(II) complexes, [Cu(dps)Cl2] · H2O (1) and [(dps)(Cl)CdII(μ-Cl)2CdII(Cl)(dps)] (2). The copper atom in (1) is coordinated to one sulfur and two nitrogen atoms from the dps ligand and two chlorides in a distorted square-pyramidal environment. Complex (2) has two distorted octahedra sharing the basal edge that contain the bridging chloro ligands, each of which resides at a center of inversion. Cyclic voltammetric data show that (1) undergoes two reversible one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. However, cyclic voltammetry of (2) gives two irreversible reduced waves.  相似文献   

7.
Equilibrium and solution structural study of mixed-metal-mixed-ligand complexes of Cu(II), Ni(II) and Zn(II) with L-cysteine, L-threonine and imidazole are conducted in aqueous solution by potentiometry and spectrophotometry. Stability constants of the binary, ternary and quaternary complexes are determined at 25 ±1°C and in I= 0.1 M NaClO4. The results of these two methods are made selfconsistent, then rationalized assuming an equilibrium model including the species H3A, H2A, A, BH, B, M(OH), M(OH)2, M(A), MA(OH), M(B), M(A)(B), M2(A)2(B), M2(A)2(B-H), M1M2(A)2(B) and M1M2(A)2(B-H) (where the charges of the species have been ignored for the sake of simplicity) (A = L-cysteine, L-threonine, salicylglycine, salicylvaline and BH = imidazole). Evidence of the deprotonation of BH ligand is available at alkalinepH. N1H deprotonation of the bidentate coordinated imidazole ligand in the binuclear species atpH > 70 is evident from spectral measurements. Stability constants of binary M(A), M(B) and ternary M(A)(B) complexes follow the Irving-Williams order.  相似文献   

8.
Ni(II) mononuclear dithiocarbamate complexes with bidentate P,P ligands of composition [Ni(R2dtc)(P,P)]X {R?=?pentyl (pe), benzyl (bz); dtc?=?S2CN?; P,P?=?1,2-bis(diphenylphosphino)ethane (dppe), 1,4-bis(diphenylphosphino)butane (dppb), 1,1′-bis(diphenylphosphino) ferrocene (dppf); X?=?ClO4, Cl, Br, NCS} and binuclear complexes of composition [Ni2(μ-dpph)(R2dtc)2]X2 with a P,P-bridging ligand {P,P?=?1,6-bis(diphenylphosphino)hexane (dpph); X?=?Cl, Br, NCS} have been synthesized. The complexes have been characterized by elemental and thermal analysis, IR, electronic and 31P{1H}-NMR spectroscopy, magnetochemical and conductivity measurements. Single crystal X-ray analysis of [Ni(pe2dtc)(dppf)]ClO4 confirmed a distorted square planar coordination in the NiS2P2 chromophore. For selected samples, the catalysis of graphite oxidation was studied.  相似文献   

9.
In search of new DNA probes a series of new mono and binuclear cationic complexes [RuH(CO)(PPh3)2(L)]+ and [RuH(CO)(PPh3)2(-μ-L)RuH(CO)(PPh3)2]2+ [L=pyridine-2-carbaldehyde azine (paa), p-phenylene-bis(picoline)aldimine (pbp) and p-biphenylene-bis(picoline)aldimine (bbp)] have been synthesized. The reaction products were characterized by microanalyses, spectral (IR, UV-Vis, NMR and ESMS and FAB-MS) and electrochemical studies. Structure of the representative mononuclear complex [RuH(CO)(PPh3)2(paa)]BF4 was crystallographically determined. The crystal packing in the complex [RuH(CO)(PPh3)2(paa)]BF4 is stabilized by intermolecular π-π stacking resulting into a spiral network. Topoisomerase II inhibitory activity of the complexes and a few other related complexes [RuH(CO)(PPh3)2(L)]+ {L=2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) and 2,3-bis(2-pyridyl)-pyrazine (bppz)} have been examined against filarial parasite Setaria cervi. Absorption titration experiments provided good support for DNA interaction and binding constants have also been calculated which were found in the range 1.2 × 103-4.01 × 104 M−1.  相似文献   

10.
The ternary complexes [Pd(RaaiX)(SS)ClO4) where RaaiX is a N(1)-alkyl-2-(arylazo)imidazole (p-RC6H4N =NC3H2NN(1) X; X = Me, or Et, and R = H, Me or Cl) and SS = N,N-diethyldithiocarbamate or morpholinedithiocarbamate have been prepared and characterized by elemental analysis, i.r., u.v.-vis. and 1H-n.m.r. data. Electrochemical studies show azo reduction. The complexes are thermally unstable and decompose to bis(dithiocarbamato)palladium(II) in solution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Summary When platinum(II) chloride dissolved in acetic acid containing concentrated hydrochloric acid was refluxed withN-phenylpyrazole(liphpz) andN-(p-tolyl)pyrazole (Htlpz), complexes of composition [Pt(N-C)Cl]2 (N-C = phpz, tlpz) were obtained, in which phpz and tlpz are coordinated through nitrogen and carbon forming a five membered metallocycle. Similar palladium(II) complexes [Pd(N-C)Cl]2 were easily prepared by the reaction of palladium(II) chloride with Hphpz and Htlpz in methanol in the presence of lithium chloride. These [M(N-C)CI]2 complexes reacted with tri-n-butylphosphine (PBu3) and pyridine (py) to give the adducts [M(N-C)ClL](L = PBu3, py). Ethylenediamine(en) and acetylacetone(Hacac) gave IPd(phpz)(en)]Cl and [Pd(phpz)(acac)] respectively. These new complexes are characterized by means of1H-n.m.r. and i.r. spectra, and probable structures are proposed.Reprints of this article are not available.  相似文献   

12.
The reaction of [M(L)]Cl2 · 2H2O (M = Ni2+ and Cu2+, L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane) with 1,1-cyclopropanedicarboxylic acid (H2-cpdc) generates one-dimensional hydrogen-bonded infinite chains [Ni(L)(H-cpdc)2] (1) and [Cu(L)(H-cpdc)2] (2) (H-cpdc = cyclopropane-1-carboxylic acid-1-carboxylate). These complexes have been characterized by X-ray crystallography, spectroscopy, and cyclic voltammetry. The crystal structures of (1) and (2) show a distorted octahedral coordination geometry around the metal ion, with four secondary amines and two oxygen atoms of the H-cpdc ligand at the trans position. Complexes (1) and (2) display the one-dimensional hydrogen-bonded infinite chains. The cyclic voltammogram of the complexes display two one-electron waves corresponding to MII/MIII and MII/MI processes. The electronic spectra and electrochemical behavior of the complexes are significantly affected by the nature of the axial H-cpdc ligand.  相似文献   

13.
The complexes [MBr(π-allyl)(CO)2(bipy)] (M = Mo, W, bipy = 2,2′-bipyridine) react with alkylxanthates (MIRxant), and N-alkyldithiocarbamates (MIRHdtc) (MI = Na or K), yielding complexes of general formula [M(S,S)- (π-allyl)(CO)2(bipy)] (M = Mo, (S,S) = Rxant (R = Me, Et, t-Bu, Bz), RHdtc (R = Me, Et); M = W, (S,S) = Extant). A monodentate coordentate coordination of the (S,S) ligand was deduced from spectral data. The reaction of [MoBr(π-allyl)(CO)2(bipy)] with MeHdtc and Mexant gives the same complexes whether pyridine is present or not. The complexes [Mo(S,S)(π-allyl)(CO)2(bipy)] ((S,S) = MeHdtc, Mexant) do not react with an excess of (S,S) ligand and pyridine.No reaction products were isolated from reaction of [MoBr(π-allyl)(CO)2(dppe)] with xanthates or N-alkyldithiocarbamates.  相似文献   

14.
The preparation of complexes [MX2( 1 )] (M = Ni, Pd, and Pi; X - Cl, Br, and I; 1 = 1,2-bis[(diphenylphosphino)methyl]benzene). [Pt(OSO2CH3)Et( 1 )], [Pt(alkene)( 1 )] (alkene - C2H2, and CH2 = CHCN), and [( 1 )Pt-(μ-H)2PtH( 1 )][BPh4] is reported. Their 1H- and 31P-NMR spectra were recorded and used lor structural assignments. The X-ray crystal structure of [Pt(C2H4)( 1 )] was determined. It is shown that the P? Pt? P bond angle in this complex differs significantly from those found in related compounds with monodentate phosphines, and that this difference is likely to be due to intramolecular contacts.  相似文献   

15.
First examples of transition metal complexes with HpicOH [Cu(picOH)2(H2O)2] ( 1 ), [Cu(picO)(2,2′‐bpy)]·2H2O ( 2 ), [Cu(picO)(4,4′‐bpy)0.5(H2O)]n ( 3 ), and [Cu(picO)(bpe)0.5(H2O)]n ( 4 ) (HpicOH = 6‐hydroxy‐picolinic acid; 2,2′‐bpy = 2,2′‐bipyridine; 4,4′‐bpy = 4,4′‐bipyridine; bpe = 1,2‐bis(4‐pyridyl)ethane) have been synthesized and characterized by single‐crystal X‐ray diffraction. The results show that HpicOH ligand can be in the enol or ketonic form, and adopts different coordination modes under different pH value of the reaction mixture. In complex 1 , HpicOH ligand is in the enol form and adopts a bidentate mode. While in complexes 2 – 4 , as the pH rises, HpicOH ligand becomes in the ketonic form and adopts a tridentate mode. The coordination modes in complexes 1 – 4 have not been reported before. Because of the introduction of the terminal ligands 2,2′‐bpy, complex 2 is of binuclear species; whereas in complexes 3 and 4 , picO ligands together with bridging ligands 4,4′‐bpy and bpe connect CuII ions to form 2D nets with (123)2(12)3 topology.  相似文献   

16.
Metal Complexes of Biologically Important Ligands. CIII. [1] Palladium(II), Platinum(II), Ruthenium(II), Rhodium(III), and Iridium(III) Complexes of Desoxyfructosazine The reactions of the pyrazine derivative desoxyfructosazin(pz) with K2PtCl4 and with the chlorobridged [M(PR3)Cl2]2 (M = Pd, Pt), [(η5-C5Me5)MCl2]2 and [(η6-p-Cymol)RuCl2]2 give the watersoluble complexes cis-Cl2Pt(pz)2, (R3P)(Cl)M(pz)M(Cl)(PR3) (M = Pd, Pt), (η5-C5Me5)(Cl)2M(pz)M(Cl)25-C5Me5) (M = Rh, Ir), (η6-p-Cymol)(Cl2)Ru(pz)Ru(Cl)26-p-Cymol).  相似文献   

17.
A heptadentate ligand, tris[(L)-alanyl-2-carboxamidoethyl]amine (H3trenala), has been synthesized as its tetrahydrochloride salt; its protonation constants and the stability constants of the copper(II) and nickel(II) chelates have been determined by potentiometry. Mononuclear species with protonated, neutral, or deprotonated forms of the ligand, [Cu(H5trenala)]4+, [M(H4trenala)]3+, [M(H3trenala)]2+, [M(H2trenala)]+, and [M(Htrenala)] (M?=?Cu2+ and Ni2+) have been detected in all cases, while only Cu2+ gives dinuclear [Cu2(H2trenala)]2+, [Cu2(Htrenala)]2+, [Cu2(trenala)]+, and [Cu2(trenala)(OH)] species. Two dinuclear copper(II) complexes have been prepared and characterized by spectroscopic techniques (IR, UV-Vis, mass electro-spray) and thermogravimetric analysis.  相似文献   

18.
ZnCl2 reacts with the multidentate ligand 2,6-diacetylpyridine bis(2-furanoylhydrazone), H2dapf, to produce two complexes, [ZnCl(H2dapf)(H2O)]Cl · 4H2O and [Zn(dapf)]2, the predominant coordination mode of H2dapf being influenced by the reaction time. The mononuclear and binuclear complexes were prepared by refluxing DMF/H2O solutions of the reactants (1:1 molar ratio) for 3 and 6 h, respectively. The mononuclear complex possesses a distorted pentagonal bipyramidal (PBP) configuration, with the five ONNNO-donor atoms of the protonated H2dapf ligand in the pentagonal plane, with the water molecule and the chloride ion positioned in the axial position. The binuclear complex has two equivalent pseudo-octahedral ZnII centers, with the pyridyl nitrogen atoms of the two fully deprotonated ligands acting as bridges between the two metal atoms.  相似文献   

19.
Cationic pentafluorophenyl palladium(II) complexes of the type [Pd(C6F5)L2(APPY)]ClO4 (L = PPh3, PBu3n; L2 = bipy and A acetylmethylenetriphenylphosphorane) have been prepared by addition of APPY to the perchlorato complexes [Pd(OClO3)(C6F5)L2]; the APPY ligand is O-coordinated, which is unprecedented in keto-stabilized ylide complexes of palladium.The neutral complex Pd(C6F5)(Cl)(tht)(APPY) has been made by addition of APPY to the binuclear complex Pd2(μ-Cl)2(C6F5)2(tht)2 (tht = tetrahydrothiophene); in which the APPY ligand shows the normal C-coordination.  相似文献   

20.
The preparation of monomeric complexes [MX( 1 )] is reported where M = Cu, Ag, Au; X = I, Cl, NO3, BF4 and 1 = 2,11-bis(diphenylphosphinomethyl)benzo[c]phenanthrene. The solution structure of the complexes is discussed on the basis of molecular weight, conductivity and NMR. measurements. In acetonitrile and nitromethane, the nitrate and fluoroborate complexes exist as ionic species [M( 1 )]+X? whereas the halo-complexes are present as equilibrium mixtures of ‘covalent’ and ‘ionic’ forms. All the complexes are associated in CH2Cl2-solutions. The values of 1J show that this association in [Ag(NO3) ( 1 )] and [Ag(BF4) ( 1 )] is best described in terms of ion-pairing while that for species [AgX( 1 )] (X = Cl, Br and I) is mainly ‘covalent’ in nature. Evidence is presented for the formation of the complex ion [Ag(CH3CN)n( 1 )]+ in acetonitrile solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号