首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Open-configuration magnetic resonance imaging (MRI) systems are becoming increasingly desirable for musculoskeletal imaging and image-guided radiotherapy because of their non-claustrophobic configuration. However, geometric image distortion in large fields-of-view (FOV) due to field inhomogeneity and gradient nonlinearity hinders the practical applications of open-type MRI. We demonstrated the use of geometric distortion correction for increasing FOV in open MRI. Geometric distortion was modeled and corrected as a global polynomial function. The appropriate polynomial order was identified as the minimum difference between the coordinates of control points in the distorted MR image space and those predicted by polynomial modeling. The sixth order polynomial function was found to give the optimal value for geometric distortion correction. The area of maximum distortion was < 1 pixel with an FOV of 285 mm. The correction performance error was increased at most 1.2% and 2.9% for FOVs of 340 mm and ~ 400 mm compared with the FOV of 285 mm. In particular, unresolved distortion was generated by local deformation near the gradient coil center.  相似文献   

2.
Agarwal A  Yoo YM  Schneider FK  Kim Y 《Ultrasonics》2008,48(5):384-393
Quadrature demodulation-based phase rotation beamforming (QD-PRBF) is commonly used to support dynamic receive focusing in medical ultrasound systems. However, it is computationally demanding since it requires two demodulation filters for each receive channel. To reduce the computational requirements of QD-PRBF, we have previously developed two-stage demodulation (TSD), which reduces the number of lowpass filters by performing demodulation filtering on summation signals. However, it suffers from image quality degradation due to aliasing at lower beamforming frequencies. To improve the performance of TSD-PRBF with reduced number of beamforming points, we propose a new adaptive field-of-view (AFOV) imaging method. In AFOV imaging, the beamforming frequency is adjusted depending on displayed FOV size and the center frequency of received signals. To study its impact on image quality, simulation was conducted using Field II, phantom data were acquired from a commercial ultrasound machine, and the image quality was quantified using spatial (i.e., axial and lateral) and contrast resolution. The developed beamformer (i.e., TSD-AFOV-PRBF) with 1024 beamforming points provided comparable image resolution to QD-PRBF for typical FOV sizes (e.g., 4.6% and 1.3% degradation in contrast resolution for 160 mm and 112 mm, respectively for a 3.5 MHz transducer). Furthermore, it reduced the number of operations by 86.8% compared to QD-PRBF. These results indicate that the developed TSD-AFOV-PRBF can lower the computational requirement for receive beamforming without significant image quality degradation.  相似文献   

3.
高翔  李超  方广有 《中国物理 B》2014,23(2):28401-028401
In this paper a millimeter-wave (MMW) squint indirect holographic method is presented, which is suitable for imaging with a large field-of-view. The proposed system employs the squint operation mode to remove the background and twin- image interferences, which achieves a similar effect to off-axis holography but leaves out the large-aperture quasi-optical component. The translational scanning manner enables a large field of view and ensures the image uniformity, which is difficult to realize in off-axis holography. In addition, a corresponding imaging algorithm for the presented scheme is developed to reconstruct the image from the recorded hologram. Some imaging results on typical objects, obtained with electromagnetic simulation, demonstrate good performance of the imaging scheme and validate the effectiveness of the image reconstruction algorithm.  相似文献   

4.
为了满足机载搜索与跟踪系统的实际使用要求,根据变焦系统的基本理论和成像光谱系统的特点,设计一个滤光片式双视场成像光谱仪光学系统实例。系统采用1/3英寸CCD接收,像元尺寸为6.0 m6.0 m。通过高斯法分析与求解得到初始结构,使用Zemax软件对其优化,实现0.45 m~0.7 m/0.6 m~0.95 m双波段清晰成像,通过轴向移动变倍组完成139.75/32.25双视场转换,在视场切换过程中,F数为5.6且恒定不变。设计结果表明:在各谱段下系统宽视场畸变3.5%,窄视场畸变0.2%,探测器的Nyquist频率50 lp/mm处光学传递函数的峰值均大于0.5,系统的最小后截距大于35 mm,用以安装滤光片轮,满足装配要求。  相似文献   

5.
基于电磁场的多尺度理论,研究了各向异性介质球内、外电场的规律,导出了各向异性目标散射场的表达式,得到了各向异性介质目标散射振幅、散射截面等的解析表达式,并对其正确性进行了检验.仿真结果表明:各向异性介质球的散射具有偶极辐射的特点,介电常量越大,产生的偶极矩也愈大,散射也越强.其结果可为各向异性目标监测、各向异性光散射研究等提供理论支持.  相似文献   

6.
Segmented echoplanar imaging (EPI) is a potentially valuable acquisition method for neonatal diffusion-weighted imaging (DWI) due to the lower acoustic noise levels as well as reduced blurring and distortion associated with it, as compared with single-shot EPI. Reduced acoustic noise may be important for the safety of neonates. However, little information regarding the efficacy of segmented EPI motion correction schemes is available for the neonatal population. We quantitatively assessed the efficacy of a postprocessing technique for motion artifact reduction involving phase correction by nonlinear optimization, alone and in combination with a novel method of utilizing a second data set (referred to as segment data swapping). These methods were applied to three-directional eight-segment echoplanar DW images obtained from 13 sedated neonates and to nine-directional DW images from 3 unsedated neonates. For comparison, the efficacy of the nonlinear optimization method was also evaluated in four adults. Motion correction efficacy was quantified using the motion artifact-to-signal ratio (ASR). The median, 70th percentile and 90th percentile ASR values obtained from neonatal three-directional DWI using nonlinear optimization alone were 2.8%, 4.6% and 9.6%, respectively. Efficacy improved (P<.005), particularly in dealing with the images most difficult to correct, when the phase correction by numerical optimization was combined with segment data swapping (median ASR=1.9%, 70th percentile ASR=2.7%, 90th percentile ASR=4.3%). Similar results were obtained for nine-directional diffusion tensor imaging. Nonlinear optimization alone applied to adult images showed significantly (P<.001) lower ASR values (median ASR=0.9%, 70th percentile ASR=2.1%, 90th percentile ASR=4.1%), demonstrating the greater challenge in DWI of neonates with segmented EPI. In conclusion, phase correction by nonlinear optimization provides effective motion correction for neonatal DW eight-segment EPI, especially when used in conjunction with segment data swapping.  相似文献   

7.
刘飞  魏雅喆  韩平丽  刘佳维  邵晓鹏 《物理学报》2019,68(8):84201-084201
针对实时广域高分辨率成像需求,充分利用具有对称结构的多层共心球透镜视场大且各轴外视场成像效果一致性好的特点,设计基于共心球透镜的多尺度广域高分辨率计算成像系统.该系统基于计算成像原理,通过构建像差优化函数获得光学系统设计参数,结合球形分布的次级相机阵列进行全局性优化,提高系统性能的同时有效简化光学设计过程、降低系统设计难度.系统稳定性测试结果表明,该成像系统的MTF(modulation transmission function)值在截止频率处接近衍射极限,弥散斑均方根恒小于探测器像元尺寸,整机实景实时成像效果良好,无视觉可见畸变.该系统不仅有效解决了传统成像中广域和高分辨率成像矛盾的问题,而且为计算光学成像系统设计奠定了一定研究基础.  相似文献   

8.
各向异性扩散滤波的正则化参数选取方法   总被引:1,自引:4,他引:1  
王怀野  张科  李言俊 《光子学报》2005,34(9):1411-1414
研究了图像处理中各向异性扩散的正则化参数选取问题.根据分片常数模型,提出了一种噪声估计方法,该方法通过寻找图像中的最小区域方差来估计噪声;分析了正则化参数与图像噪声的关系,提出了一个正则化参数选取的修正公式,该公式使正则化参数能根据图像噪声自适应调整;最后给出了由正则化参数选取高斯模板尺度的规则.实验结果显示,这种正则化选取方法可以使各向异性扩散方程对图像噪声具有很好的自适应性.  相似文献   

9.
Several methods have been proposed for motion correction of high angular resolution diffusion imaging (HARDI) data. There have been few comparisons of these methods, partly due to a lack of quantitative metrics of performance. We compare two motion correction strategies using two figures of merit: displacement introduced by the motion correction and the 95% confidence interval of the cone of uncertainty of voxels with prolate tensors. What follows is a general approach for assessing motion correction of HARDI data that may have broad application for quality assurance and optimization of postprocessing protocols. Our analysis demonstrates two important issues related to motion correction of HARDI data: (1) although neither method we tested was dramatically superior in performance, both were dramatically better than performing no motion correction, and (2) iteration of motion correction can improve the final results. Based on the results demonstrated here, iterative motion correction is strongly recommended for HARDI acquisitions.  相似文献   

10.
Subject motion remains a challenging problem to overcome in clinical and research applications of magnetic resonance imaging (MRI). Subject motion degrades the quality of MR images and the integrity of experimental data. A promising method to correct for subject motion in MRI is the spherical navigator (SNAV) echo. Spherical navigators acquire k-space data on the surface of a sphere in order to measure three-dimensional (3D) rigid-body motion. Analysis begins by registering the magnitude of two SNAVs to determine the 3D rotation between them. Several different methods to register SNAV data exist, each with specific capabilities and limitations. In this study, we assessed the accuracy, precision and computational requirements of measuring rotations about all three coordinate axes by correlating the spherical harmonic expansions of SNAV data. We compare the results of this technique to previous SNAV studies and show that, although computationally expensive, the spherical harmonic technique is a highly accurate, precise and robust method to register SNAVs and detect 3D rotations in MRI. A key advantage to the spherical harmonic technique is the ability to optimize the accuracy, precision, processing time and memory requirements by adjusting parameters used in the registration. While present developments are aimed at improving the programming efficiency and memory handling of the algorithm, this registration technique is currently well suited for retrospective motion correction applications, such as removing motion-related image artifacts and aligning slices within a high-resolution 3D volume.  相似文献   

11.
The accuracy of measuring voxel intensity changes between stimulus and rest images in fMRI echo-planar imaging (EPI) data is severely degraded in the presence of head motion. In addition, EPI is sensitive to susceptibility-induced geometric distortions. Head motion causes image shifts and associated field map changes that induce different geometric distortion at different time points. Conventionally, geometric distortion is "corrected" with a static field map independently of image registration. That approach ignores all field map changes induced by head motion. This work evaluates the improved motion correction capability of mapping slice to volume with concurrent iterative field corrected reconstruction using updated field maps derived from an initial static field map that has been spatially transformed and resampled. It accounts for motion-induced field map changes for translational and in-plane rotation motion. The results from simulated EPI time series data, in which motion, image intensity and activation ground truths are available, show improved accuracy in image registration, field corrected image reconstruction and activation detection.  相似文献   

12.
There has been vast interest in determining the feasibility of functional magnetic resonance imaging (fMRI) as an accurate method of imaging brain function for patient evaluations. The assessment of fMRI as an accurate tool for activation localization largely depends on the software used to process the time series data. The performance evaluation of different analysis tools is not reliable unless truths in motion and activation are known. Lack of valid truths has been the limiting factor for comparisons of different algorithms. Until now, currently available phantom data do not include comprehensive accounts of head motion. While most fMRI studies assume no interslice motion during the time series acquisition in fMRI data acquired using a multislice and single-shot echo-planar imaging sequence, each slice is subject to a different set of motion parameters. In this study, in addition to known three-dimensional motion parameters applied to each slice, included in the time series computation are geometric distortion from field inhomogeneity and spin saturation effect as a result of out-of-plane head motion. We investigated the effect of these head motion-related artifacts and present a validation of the mapping slice-to-volume (MSV) algorithm for motion correction and activation detection against the known truths. MSV was evaluated, and showed better performance in comparison with other widely used fMRI data processing software, which corrects for head motion with a volume-to-volume realignment method. Furthermore, improvement in signal detection was observed with the implementation of the geometric distortion correction and spin saturation effect compensation features in MSV.  相似文献   

13.
This study quantitatively assesses the effectiveness of retrospective beat-to-beat respiratory motion correction (B2B-RMC) at near 100% efficiency using high-resolution coronary artery imaging. Three-dimensional (3D) spiral images were obtained in a coronary respiratory motion phantom with B2B-RMC and navigator gating. In vivo, targeted 3D coronary imaging was performed in 10 healthy subjects using B2B-RMC spiral and navigator gated balanced steady-state free-precession (nav-bSSFP) techniques. Vessel diameter and sharpness in proximal and mid arteries were used as a measure of respiratory motion compensation effectiveness and compared between techniques. Phantom acquisitions with B2B-RMC were sharper than those acquired with navigator gating (B2B-RMC vs. navigator gating: 1.01±0.02 mm−1 vs. 0.86±0.08 mm−1, P<.05). In vivo B2B-RMC respiratory efficiency was significantly and substantially higher (99.7%±0.5%) than nav-bSSFP (44.0%±8.9%, P<.0001). Proximal and mid vessel sharpnesses were similar (B2B-RMC vs. nav-bSSFP, proximal: 1.00±0.14 mm−1 vs. 1.08±0.11 mm−1, mid: 1.01±0.11 mm−1 vs. 1.05±0.12 mm−1; both P=not significant [ns]). Mid vessel diameters were not significantly different (2.85±0.39 mm vs. 2.80±0.35 mm, P=ns), but proximal B2B-RMC diameters were slightly higher (2.85±0.38 mm vs. 2.70±0.34 mm, P<.05), possibly due to contrast differences. The respiratory efficiency of B2B-RMC is less variable and significantly higher than navigator gating. Phantom and in vivo vessel sharpness and diameter values suggest that respiratory motion compensation is equally effective.  相似文献   

14.
张祥翔  傅雨田 《应用光学》2007,28(4):412-415
空间推扫相机的光学系统要求具有大视场、大口径、低F数等特点,据此设计了一种3波段光学系统。在参考国内外各种扫描或推扫相机结构的基础上,根据像差理论和系统要求,采用有效的分光方式和紧凑的光路结构,对不同的波段采用不同的像差校正方法,以及对系统优化组合后,最终得到了一个实用的光学系统。该系统包括可见、中波红外和长波红外波段,视场达到2.93°×0.3°,可见波段的F数为3.8,中波和长波波段的F数为1.9。从设计结果可以看出,系统3个波段的光学调制传递函数(MTF)都接近衍射极限。  相似文献   

15.
傅艳莉  李超  陈浩  曹雪砷 《应用声学》2022,41(4):568-577
声波远探测测井技术近年来在复杂油气藏的构造识别和储层评价中发挥着重要作用。该技术利用来自井外的反射波对井旁地质构造进行准确成像,但由于反射波具有幅度低、受幅度强的井孔直达波干扰等特点,实际数据提取到的反射波信噪比往往比较低,需要对反射波进行降噪处理。非线性各向异性扩散滤波能够在滤除图像噪声的同时保留图像边缘及细节等信息,在地震数据处理和医学图像去噪中都有广泛应用。该文从各向异性扩散滤波的基本原理入手,将提取到的井外反射波信号当作图像,采用不同扩散张量进行处理,通过含噪声的模拟数据处理验证了该方法的处理效果并建立起适合于远探测测井的数据处理流程,实际远探测数据处理结果进一步表明其具有较好的应用前景。  相似文献   

16.
Patient and physiological motion can cause artifacts in DTI of the spinal cord which can impact image quality and diffusion indices. The purpose of this investigation was to determine a reliable motion correction method for pediatric spinal cord DTI and show effects of motion correction on DTI parameters in healthy subjects and patients with spinal cord injury. Ten healthy subjects and ten subjects with spinal cord injury were scanned using a 3 T scanner. Images were acquired with an inner field-of-view DTI sequence covering cervical spine levels C1 to C7. Images were corrected for motion using two types of transformation (rigid and affine) and three cost functions. Corrected images and transformations were examined qualitatively and quantitatively using in-house developed code. Fractional anisotropy (FA) and mean diffusivity (MD) indices were calculated and tested for statistical significance pre- and post- motion correction. Images corrected using rigid methods showed improvements in image quality, while affine methods frequently showed residual distortions in corrected images. Blinded evaluation of pre and post correction images showed significant improvement in cord homogeneity and edge conspicuity in corrected images (p < 0.0001). The average FA changes were statistically significant (p < 0.0001) in the spinal cord injury group, while healthy subjects showed less FA change and were not significant. In both healthy subjects and subjects with spinal cord injury, quantitative and qualitative analysis showed the rigid scaled-least-squares registration technique to be the most reliable and effective in improving image quality.  相似文献   

17.
Motion correction is an important step in the functional magnetic resonance imaging (fMRI) analysis pipeline. While many studies simply exclude subjects who are estimated to have moved beyond an arbitrary threshold, there exists no objective method for determining an appropriate threshold. Furthermore, any criterion based only upon motion estimation ignores the potential for proper realignment. The method proposed here uses unsupervised learning (specifically k-means clustering) on features derived from the mean square derivative (MSD) of the signal before and after realignment to identify problem data. These classifications are refined through analysis of correlation between subject activation maps and the mean activation map, as well as the relationship between tasking and motion as measured through regression of the canonical hemodynamic response functions to fit both estimated motion parameters and MSD. The MSD is further used to identify specific scans containing residual motion, data which is suppressed by adding nuisance regressors to the general linear model; this statistical suppression is performed for identified problem subjects, but has potential for use over all subjects. For problem subjects, our results show increased hemodynamic activity more consistent with group results; that is, the addition of nuisance regressors resulted in a doubling of the correlation between the activation map for the problem subjects and the activation map for all subjects. The proposed method should be useful in helping fMRI researchers make more efficient use of their data by reducing the need to exclude entire subjects from studies and thus collect new data to replace excluded subjects.  相似文献   

18.
孙彪  郭霞生  屠娟  章东 《应用声学》2021,40(1):44-50
热疗在肿瘤消融、高血压治疗等方面有重要应用价值.对热疗过程进行温度监控有利于实施合理的治疗规划,同时可提高治疗的安全性、减少副作用.利用基于超声回波偏移的热应变测温理论进行二维温度估计是一种常用的超声测温方法.但该理论基于组织热膨胀及声速随温度线性变化的假设,适用的温度测量范围一般限于37℃~50℃.该文基于升温组织的...  相似文献   

19.
A continuum model for the growth of self-assembled quantum dots that incorporates surface diffusion, an elastically deformable substrate, wetting interactions and anisotropic surface energy is presented. Using a small slope approximation a thin-film equation for the surface profile that describes faceted growth is derived. A linear stability analysis shows that anisotropy acts to destabilize the surface. It lowers the critical height of flat films and there exists an anisotropy strength above which all thicknesses are unstable. A numerical algorithm based on spectral differentiation is presented and simulations are carried out. These clearly show faceting of the growing islands and a power law coarsening behavior.  相似文献   

20.
Gu Ma 《中国物理 B》2022,31(7):74210-074210
Diffractive lenses (DLs) can realize high-resolution imaging with light weight and compact size. Conventional DLs suffer large chromatic and off-axis aberrations, which significantly limits their practical applications. Although many achromatic methods have been proposed, most of them are used for designing small aperture DLs, which have low diffraction efficiencies. In the designing of diffractive achromatic lenses, increasing the aperture and improving the diffraction efficiency have become two of the most important design issues. Here, a novel phase-coded diffractive lens (PCDL) for achromatic imaging with a large aperture and high efficiency is proposed and demonstrated experimentally, and it also possesses wide field-of-view (FOV) imaging at the same time. The phase distribution of the conventional phase-type diffractive lens (DL) is coded with a cubic function to expand both the working bandwidth and the FOV of conventional DL. The proposed phase-type DL is fabricated by using the laser direct writing of grey-scale patterns for a PCDL of a diameter of 10 mm, a focal length of 100 mm, and a cubic phase coding parameter of 30π. Experimental results show that the working bandwidth and the FOV of the PCDL respectively reach 50 nm and 16° with over 8% focusing efficiency, which are in significant contrast to the counterparts of conventional DL and in good agreement with the theoretical predictions. This work provides a novel way for implementing the achromatic, wide FOV, and high-efficiency imaging with large aperture DL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号