首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkannin and shikonin (A/S) derivatives have been found in the roots of several Boraginaceous species and are produced through plant tissue cultures. The chiral compounds alkannins and shikonins are potent pharmaceutical substances with a wide spectrum of pharmacological activities such as wound healing, antimicrobial, anti-inflammatory, anticancer and antioxidant. Although oligomeric A/S derivatives have been detected in root extracts and commercial samples their detection and determination through high-performance liquid chromatography has not been reported. Therefore, in the present study a rapid, simple high-performance liquid chromatography-diode array detection-mass spectrometry (HPLC-DAD-MS) method was developed to detect, separate and determine monomeric and oligomeric/polymeric derivatives of alkannin/shikonin simultaneously for the first time. An optimization of HPLC-DAD parameters was performed. Both atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) modes were applied, in order to compare detection of monomeric and oligomeric A/S. Additionally, oligomeric A/S constituents in several samples were identified and the mode of A/S polymerization was proposed.  相似文献   

2.
The chiral pair alkannin and shikonin (A/S) are potent pharmaceutical substances with a wide spectrum of biological activity; their enantiomeric ratio does not influence the major biological activity studied hitherto. Nevertheless, in pharmaceutical development and approval of chiral drugs from the Health and Regulatory Authorities, full documentation of methods of analysis of enantiomeric drugs, is required in order to evaluate the enantiomeric purity of starting materials and final products and to control the stability of enantiomers in pharmaceutical formulations under several experimental conditions. In the present study, the enantiomeric ratio of A/S was determined in several commercial samples of alkannin and shikonin and also the proportion of A/S derivatives in several Alkanna root samples, which are all used as active ingredients in pharmaceuticals. Light and air proved not to influence the enantiomeric ratio of A/S on a shikonin commercial sample, and temperature also did not alter the A/S ratio on shikonin and alkannin commercial samples. Microencapsulation of alkannin and shikonin commercial samples in ethylcellulose microspheres and also molecular inclusion of a shikonin commercial sample in beta-hydroxypropyl-cyclodextrin, which are used as drug delivery systems, did not alter the A/S enantiomeric ratio.  相似文献   

3.
Summary Polymerization of alkannin, shikonin, and their derivatives, potent pharmaceutical substances, crucially affects their use in pharmaceuticals, cosmetics, and as food colorants, because it leads to loss of their antimicrobial activity, reduction of the lustre of their red coloration, and a decrease in their solubility. In this study size-exclusion chromatography (SEC) has been used for the first time for qualitative and quantitative analysis of monomeric and polymeric hydroxynaphthoquinone alkannin and shikonin derivatives. The purity and degree of polymerization has been determined to evaluate severalAlkanna tinctoria root samples from different geographical sources, and commercial samples of alkannin and shikonin, as pharmaceutical raw materials. Conditions for extraction of hydroxynaphthoquinones fromAlkanna tinctoria roots with olive oil were optimized in terms of polimerization, aiming to improve the biological activity of the final pharmaceutical product, Helixderm.  相似文献   

4.
Naturally occurring isohexenylnaphthazarins (IHN), such as Alkannin, Shikonin (A/S) and their derivatives, are potent pharmaceutical substances with a wide spectrum of biological activity. In the present study, inclusion complexes of alkannin and shikonin commercial samples and IHN derivatives in the form of an oily extract of Alkanna tinctoria roots were formed with beta-cyclodextrin (CD) and beta-HPCD. These complexes were investigated to evaluate the effect of complexation on their aqueous solubility, decoloration, and also the percentage of polymeric A/S and IHN derivatives enclosed in the CDs cavity, since these decrease the active monomeric IHN. Both beta-CD and beta-HPCD increased the aqueous solubility of A/S and IHN derivatives and thus inclusion complexes can be used as drug delivery systems for A/S in both internal (capsules, tablets) and external hydrophilic pharmaceutical and cosmetic preparations (creams, gels, sprays) with enhanced bioavailability. The inclusion complexes formed had a pale purple colour, contributing to the partial decoloration of the A/S and thus of the fi nal pharmaceutical preparations. Finally, CDs selectively included more monomeric and less polymeric IHN, compared with the initial each time sample that is encapsulated; thus inclusion complexes may present enhanced biological activity.  相似文献   

5.
The bioactive compound shikonin was successfully isolated and purified from the crude extract of the traditional Chinese medicinal plant Lithospermum erythrorhizon Sieb. et Zucc. by preparative high-speed counter-current chromatography (HSCCC). The preparative HSCCC was performed using a two-phase solvent system composed of n-hexane-ethylacetate-ethanol-water (16:14:14:5 (v/v)). A total amount of 19.6 mg of shikonin at 98.9% purity was obtained from 52 mg of the crude extract (containing 38.9% shikonin) with 96.9% recovery. The preparative isolation and purification of shikonin by HSCCC was completed in 200 min in a one-step separation.  相似文献   

6.
Alkannin, shikonin (A/S) and their derivatives are enantiomeric hydroxynaphthoquinone red pigments found in the roots of almost 150 species of the Boraginaceae family. A/S have been shown to exhibit strong wound healing, antimicrobial, anti-inflammatory and antioxidant activities and recent extensive research has well established their antitumor properties. A/S and their derivatives comprise the active ingredients of several pharmaceutical and cosmetic preparations. Although A/S have been efficiently synthesized and have been produced by cell tissue cultures in high yield, most of the pharmaceutical preparations worldwide contain A/S extracted from the roots of Boraginaceous species, found in nature. In the present study, a high-performance liquid chromatography/photodiode array/mass spectrometry (HPLC/PDA/MS) method was established to identify monomeric hydroxynaphthoquinones of the alkannin series and other metabolites from Boraginaceous root extracts. This method can be applied for the identification of alkannin derivatives and other metabolites from Boraginaceous cell cultures, and also to determine active ingredients in pharmaceutical preparations containing A/S derivatives. A phytochemical investigation of the Alkanna genus grown in Greece was also performed. Fifty-three root samples belonging to 10 species of the genus Alkanna (A. calliensis, A. corcyrensis, A. graeca, A. methanaea, A. orientalis, A. pindicola, A. primuliflora, A. sieberi, A. stribrnyi and A. tinctoria) were collected from several regions of the Greek flora and analyzed for their constituent hydroxynaphthoquinones and other metabolites. In most of the above Alkanna samples tested, the main hydroxynaphthoquinones were determined to be beta,beta-dimethylacrylalkannin, isovalerylalkannin + alpha-methyl-n-butylalkannin and acetylalkannin. The hydroxynaphthoquinone constituents and their proportions were found to vary among Alkanna species. Unknown metabolites (not monomeric hydroxynaphthoquinones) were detected by HPLC-PDA-MS, while in several Alkanna species hydroxynaphthoquinones were detected for the first time.  相似文献   

7.
Phytosterols are bioactive compounds which occur in low concentrations in plant oils. Due to their beneficial effects on human health, phytosterols have already been supplemented to food. Commercial phytosterol standards show insufficient purity and/or are very expensive. In this study, we developed a high-speed counter-current chromatography (HSCCC) method for the fractionation and analysis of a commercial crude β-sitosterol standard (purity ∼60% according to supplier). Different solvent systems were tested in shake-flask experiments, and the system n-hexane/methanol/aqueous silver nitrate solution (34/24/1, v/v/v) was finally used for HSCCC fractionation. About 50 mg phytosterols was injected and distributed into 57 fractions. Selected fractions were condensed and re-injected into the HSCCC system. This measure provided pure sitostanol (>99%) and β-sitosterol (∼99%), as well as a mixture of campesterol and stigmasterol without further phytosterols. An enriched HSCCC fraction facilitated the mass spectrometric analysis of further 11 minor phytosterols (after trimethylsilylation). It was also shown that the commercial product contained about 0.3% carotinoids which eluted without delay into an early HSCCC fraction and which were separated from the phytosterols.  相似文献   

8.
Ginsenosides exhibit diverse biological activities and are major well-known components isolated from the radix of Panax ginseng C.A. Meyer. In the present work, a rapid and facile method for the separation and purification of eight ginsenosides from P. ginseng by high-speed counter-current chromatography coupled with evaporative light scattering detector (HSCCC-ELSD) was successfully developed. The crude samples for HSCCC separation were first purified from ginseng extract using a macroporous resin; the extract was loaded onto a Diaion-HP20 column and fractionated by methanol and water gradient elution. The ginsenosides-protopanaxadiol (PPD) and protopanaxatriol (PPT) fractions were subsequently eluted with 65 and 80% methanol and water gradient elution, respectively. Furthermore, these two fractions were separated by HSCCC-ELSD. The two-phase solvent system used for separation was composed of chloroform/methanol/water/isopropanol at a volume ratio of 4:3:2:1. Each fraction obtained was collected and dried, yielding the following eight ginsenosides: Rg(1), Re, Rf, Rh(1), Rb(1), Rc Rb(2) and Rd. The purity of these ginsenosides was greater than 97% as assessed by HPLC-ELSD, and their structures were characterized by electrospray-ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance spectroscopy. This is the first report regarding the separation of the ginsenosides Rh(1), Rb(2) and Rc from P. ginseng by HSCCC.  相似文献   

9.
This work systematically investigated the enantiomeric excess (e.e.) of main components isolated from the roots of three endemic Boraginaceae plants distributed extensively in China, named Arnebia euchroma (Royle) Johnst (A.e.), Lithospermum erythrorhizon Sieb. et Zucc. (L.e.) and Onosma confertum W. W. Smith (O.c.), and the optical purity of their hydrolysis products separately, by means of three different approaches. The influence of HCl on the e.e. values of the major constituents was also studied. Analysis of the absolute configurations and e.e. values of all the derivatives acquired was performed by CD and chiral-HPLC respectively. The results of the main constituents demonstrated that A.e. mainly yields S-form naphthoquinone derivatives, while the R-form is predominant in the derivatives of L.e. and O.c. The optical purity of alkannin and shikonin and their derivatives was not influenced by acid treatment in the course of separation and hydrolysis. Additionally, it was found that 100% e.e. of shikinon could be acquired from a specific shikinon ester derivative, β,β-dimethylacrylshikonin occurring in the roots of O.c., as did 100% e.e. of alkannin from β,β-dimethylacrylalkannin contained in the roots of A.e.  相似文献   

10.
The optical antipodes alkannin/shikonin (A/S) and their esters are potent pharmaceutical substances found in the roots of 150 Boraginaceous species. This study estimated and compared total and free A/S content and A/S enantiomeric ratio in roots of 11 Alkanna species (A. corcyrensis, A. tinctoria, A. pindicola, A. orientalis, A. methanaea, A. calliensis, A. graeca, A. primuliflora, A. stribrnyi, A. sieberi and A. noneiformis) growing wild in various Greek regions, to compare with cultivated species. It also re‐characterized the chirality of A/S commercial samples, since most of them were misnamed by the providers. Several Alkanna species were collected (groups 1 and 3) and botanically identified, whereas some Alkanna species were cultivated from collected seeds (group 2). Free A/S and derivatives were extracted from the dried roots of Alkanna species and analyzed by high performance liquid chromatography‐diode array detection (HPLC‐DAD). For total A/S content the hexane extracts of Alkanna roots were hydrolyzed and analyzed by HPLC‐DAD. Chirality determination and A/S enantiomeric ratio estimation was performed for several commercial samples by polarimetry,chiral LC‐DAD and circular dichroism studies. Quantitative analysis revealed that A/S content varied from one region to another even within the same species. Most of the cultivated samples contained greater amounts of free and total A/S compared with the wild ones, wheras no difference was observed in A/S enantiomeric ratio. All the Alkanna samples tested contain mainly alkannin derivatives. Some of the examined Alkanna species of the Greek flora that are endemic to the Mediterranean area could serve as alternative sources for medicinally valuable A/S derivatives. Most of the commercial A/S samples tested were misnamed in terms of chirality and re‐characterized. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
High-speed counter-current chromatography (HSCCC) using the type-J coil planet centrifuge was applied to compositional analysis of tea catechins and separation of other food-related polyphenols. The HSCCC separation of nine different standard compounds and those from extracts of commercial tea leaves was performed with a two-phase solvent system composed of tert-butyl methyl ether-acetonitrile-0.1% aqueous trifluoroacetic acid (TFA) (2:2:3, v/v/v) by eluting the upper organic phase at a flow rate of 2 ml/min. The main compounds in the extract of non-fermented green tea were found to be monomeric catechins, their galloylated esters and caffeine. In addition to these compounds, oxidized pigments, such as hydrophobic theaflavins (TFs) and polar thearubigins (TRs) were also separated and detected from the extracts of semi-fermented oolong tea and fermented black tea. Furthermore, several food-related polyphenols, such as condensed catechin oligomers (procyanidins), phenolic acids and flavonol glycosides were clearly separated under the same HSCCC condition. These separation profiles of HSCCC provide useful information about the hydrophobic diversity of these bioactive polyphenols present in various types of teas and food products.  相似文献   

12.
High-speed countercurrent chromatography (HSCCC) and preparative high-performance liquid chromatography (prep-HPLC) were successively used for the separation of pogostone and four flavonoids from Pogostemon cablin (Blanco) Benth. An efficient HSCCC separation was achieved on a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (11:5:11:5, v/v/v/v). Three well-separated peaks were obtained in the HSCCC chromatogram. The first and the second fractions each contained two flavonoids which were further separated by preparative HPLC. Consequently, the separation yielded 11.5 mg of 4', 5-Dihydroxy-3', 7-dimethoxyflavanone at a purity of 99%, 20.3 mg of 5- Hydroxy-7, 3', 4'-trimethoxyflavanone at a purity of 98%, 18 mg of 5, 4'-Dihydroxy-3, 7, 3'-trimethoxyflavone at a purity of 96%, and 8 mg of 5-Hydroxy-3, 7, 4'-tetramethoxyflvone at a purity of 98%. The third HSCCC fraction yielded 18.5 mg of pogostone at a purity of 95%. The chemical structures of these compounds were identified by ESI-MS(n), (1)H-NMR, and (13)C-NMR.  相似文献   

13.
Polymerization of naturally occurring isohexenylnaphthazarins (IHN), such as alkannin, shikonin (A/S) and their derivatives, which are potent pharmaceutical substances, significantly affects their use in pharmaceuticals, cosmetics and as food colorants, because it leads to reduction of the lustre of their red coloration, a decrease in their solubility and reduces the active monomeric IHN derivatives. In the present study, the influence of several crucial variables (processing and storage) was experimentally investigated on IHN polymerization by size exclusion chromatography (SEC). Temperature and solvent polarity increased significantly the concentration of hydroxynaphthoquinone (HNQ) polymers, while air and light exposure conditions did not significantly affect IHN polymerization. Low temperatures are proposed for all processes of industrial production of pharmaceutical preparations containing IHN and HNQ. An optimization of the industrial conditions used for the preparation of pharmaceutical and cosmetic preparations containing IHN, maximizing the active monomeric IHN fraction, was performed.  相似文献   

14.
Monomeric alkannin and shikonin (A/S) are potent pharmaceutical substances with a wide spectrum of biological activity and comprise the active ingredients for several pharmaceutical preparations. Therefore, the determination of the impurities, degradation products or byproducts in alkannin and shikonin samples is of great importance. Oligomeric alkannin and shikonin are formed during biosynthesis of these bioactive secondary metabolites in Boraginaceaous root plants, during tissue culture production of A/S, during alkaline hydrolysis of A/S esters and also thermal treatment of A/S. In the present study, a dimeric alkannin/shikonin compound was isolated by size exclusion chromatography from alkannin and shikonin commercial samples and its structure was determined by one- and two-dimensional NMR spectroscopy. The structure of the most abundant oligomeric species in these samples, a dimeric naphthoquinone, was established for the fi rst time, indicating that coupling of the side chain of one naphthoquinone unit with the aromatic ring of a second naphthoquinone leads to dimer formation. This type of coupling allows further oligomerization by leaving one isohexenyl side chain available at the second monomer unit.  相似文献   

15.
Recycling high speed counter-current chromatography (HSCCC) was successfully applied to resolution of (R, S)-naproxen (NAP) using hydroxypropyl-β-cyclodextrin (HP-β-CD) as chiral selector. The two-phase solvent system composed of n-hexane-ethyl acetate-0.1 mol L(-1) phosphate buffer solution with pH=2.67 (8:2:10, v/v/v) was selected. Influence factors for the chiral separation process were investigated, including concentration of HP-β-CD, equilibrium temperature and pH of aqueous phase. Suitable elution mode was selected for HSCCC enantioseparation of (R, S)-NAP. Under optimum separation conditions, 29 mg of (R, S)-NAP was separated using preparative recycling HSCCC with the molar ratio HP-β-CD/NAP racemate 83:1. Technical details for recycling elution mode were discussed as for chiral HSCCC separation. The purities of both (S)-NAP and (R)-NAP were over 99.5% as determined by HPLC. Enantiomeric excess of (S)-NAP and (R)-NAP reached 99.4%. Recovery for NAP enantiomers from HSCCC fractions was 82-89%, yielding 13 mg of (S)-NAP and 12 mg of (R)-NAP.  相似文献   

16.
A high-speed counter-current chromatography (HSCCC) technique in a preparative scale has been applied to separate and purify cordycepin from the extract of Cordyceps militaris(L.) Link by a one-step separation. A high efficiency of HSCCC separation was achieved on a two-phase solvent system of n-hexane-n-butanol-methanol-water (23:80:30:155, v/v/v/v) by eluting the lower mobile phase at a flow rate of 2 ml/min under a revolution speed of 850 rpm. HSCCC separation of 216.2 mg crude sample (contained cordycepin at 44.7% purity after 732 cation-exchange resin clean-up) yielded 64.8 mg cordycepin with purity of 98.9% and 91.7% recovery. Identification of the target compound was performed by UV, IR, MS, (1)H NMR and (13)C NMR.  相似文献   

17.
High-speed counter-current chromatography (HSCCC) coupled with evaporative light scattering detection (ELSD) was successfully applied to preparative separation and purification of verticine and verticinone from crude extracts of Bulbus Fritillariae Thunbergii by a one-step separation, using chloroform–ethanol–0.2 mol L−1 hydrochloric acid (3:2:2, v/v/v) as a solvent system. HPLC analysis of the fractions collected on the preparative HSCCC of 200 mg of crude extracts showed that the purity of verticine (25.6 mg) was 96.8% and that of verticinone (10.3 mg) was 95.4%. The chemical identities of these components were confirmed by 1H NMR and EI–MS.  相似文献   

18.
Following preparative isolation and purification by high-speed counter-current chromatography (HSCCC), the collected fractions were generally analyzed by high-performance liquid chromatography (HPLC) to determine the relative purities of each fraction. Our paper reports for the first time a preparative isolation-purity detection hyphenated system: online coupling of HSCCC with high-performance liquid chromatography-diode array detection (HSCCC-HPLC-DAD). The introduction of online purity analysis in HSCCC has dramatically improved the efficiency of this technique by overcoming the drawbacks of post analysis in HSCCC isolation. The effluent from the outlet of HSCCC was splitted into two parts: one was collected, while the other was introduced directly into an HPLC-DAD system for purity analysis through a switch valve. Therefore, the purities of the obtained fractions from HSCCC were monitored, and fractions with high purities were collected. This strategy has been successfully demonstrated with the preparative isolation and purification of hyperoside from Hypericum perforatum (St. Jone's Wort); a model of TBE-300A HSCCC was used to isolate and separate hyperoside from H. perforatum with a two-phase solvent system composed of ethyl acetate-ethanol-water at the volume ratio of 5:1:5 (v/v) using online detection technique. The isolation was done in less than 3.5 h, and a total of 83.0-mg hyperoside at over 99.0% purity was yielded from 300 mg of the partially purified extract. This new strategy possesses general utility in the preparation of bioactive compounds from traditional Chinese medicine (TCM).  相似文献   

19.
High-speed counter-current chromatography (HSCCC) was successfully applied to the preparative separation and purification of squalene from microalgae. Crude squalene was obtained from the microalga Thraustochytrium ATCC 26185 by extraction with organic solvents. The crude squalene was further separated using a waterless two-phase solvent system composed of n-hexane-methanol (2:1, v/v). The upper phase as the mobile phase was pumped into the column at a flow-rate of 2.0 ml min(-1) in the tail-to-head elution mode. The fractions purified and collected were analyzed by high-performance liquid chromatography. The method yielded 0.2 mg squalene at 96% purity from 150 mg of the crude squalene (0.14% squalene) with 95% recovery. The separation of squalene by HSCCC was completed in 90 min.  相似文献   

20.
The medicinal plant Scutellaria baicalensis Georgi has been used widely in traditional Chinese medicine for anti-inflammation, anticancer, antiviral and antibacterial infections, reducing the total cholesterol level and decreasing blood pressures. A high-speed counter-current chromatography (HSCCC) method was developed for the preparative separation and purification of three bioactive flavonoids, namely, baicalein, wogonin and oroxylin A, from S. baicalensis Georgi. Preparative HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-n-butanol-water (1:1:8:10, v/v/v/v) was successfully performed by increasing the flow-rate of the mobile phase stepwise from 1.0 to 2.0 ml min(-1) after 4 h. The components purified and collected were analyzed by high-performance liquid chromatography. The method yielded 144.8 mg of baicalein at 95.7% purity, 50.2 mg of wogonin at 98.5% purity, and 12.4 mg of oroxylin A at 93.2% purity from 500 mg of the crude extract in a one-step separation. The recoveries of baicalein, wogonin and oroxylin A were 92.7%, 91.6% and 92.5%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号