首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transthyretin (TTR) is a homotetrameric plasma protein associated with human amyloid diseases. Although Tafamidis has been recently approved for the treatment of TTR familial amyloid polyneuropathy (FAP), there is still a need for more effective drugs in the treatment of TTR amyloidosis diseases. In this study, a computer‐aided approach combining molecular docking, virtual screening and molecular dynamics (MD) simulations was employed to identify potent TTR amyloidosis inhibitors from National Cancer Institute (NCI), Maybridge and Asdi databases. A receptor‐specific scoring function was also developed using comparative binding energy (COMBINE) method to accurately predict the inhibitory activities for the selected compounds during virtual screening. The developed receptor‐specific scoring function demonstrated good predictive ability by yielding strong correlation coefficients between experimental activities and estimated activities for 32 training set and 9 test set compounds, respectively. Moreover, it was successfully applied to rank the candidate compounds from structure‐based virtual screening. Finally, three compounds (NSC220163, MFCD00276817 and SPB06319) were identified as potential leads, which exhibited higher predicted inhibitory activities and higher binding affinities in comparison to the Tafamidis. Our results further suggest that halogen bonding interaction plays a crucial role in stabilizing the TTR‐inhibitor complex. These results indicate that our computational approach could effectively discover more potent TTR amyloidosis inhibitors, which can be further validate by in vitro and in vivo biological tests.  相似文献   

2.
Mutations of the human transthyretin (TTR) gene have attracted medical interest as a cause of amyloidosis. Recently, we have described in detail an electrophoretic procedure with PAGE followed by IEF in urea gradients for the study of the microheterogeneity of TTR monomers (Altland, K., Winter, P., Sauerborn, M. K., Electrophoresis 1999, 20, 1349-1364). In this paper, we present a study on 49 different mutations of TTR including 33 that result in electrically neutral amino acid substitutions. The aims of the investigation were to test the sensitivity of the procedure to detect TTR variants in patients with TTR amyloidosis and their relatives and to identify some common characteristics that could explain the amyloidogenicity of these variants. We found that all tested amyloidogenic mutations could be detected by our method with the exception of those for which the corresponding variant was absent in plasma samples. Most of the electrically neutral amyloidogenic TTR variants had in common a reduced conformational stability of monomers by the activity of protons and urea. For three variants, e.g. TTR-F64L, TTR-I107V and TTR-V122I, the monomers had a conformational stability close to that of normal monomers but we found experimental and structural arguments for a weakening of the monomer-monomer contact. All types of amyloidogenic mutations affected the stability of TTR tetramers.  相似文献   

3.
《印度化学会志》2023,100(2):100892
Transthyretin (TTR) is a cerebrospinal fluid and plasma prevalent protein implicated in heritable and sporadic amyloidosis. Numerous mutations and a wide range of phenotypes have been associated with TTR-mediated amyloidosis. Among these, V30 M is the most predominant point mutation, inculpated with familial amyloid polyneuropathy (FAP), a life-threatening autosomal dominant genetic disorder characterized by the deposition of amyloid fibrils in crucial areas. Hence, efficacious therapeutics against this detrimental disorder is warranted. Lately, several peptide-based analeptics, especially the ones that are aggregation-prone and the ones derived from aggregation hotspots of amyloidogenic proteins are being increasingly proffered against the amyloid fibrils. In the present study, as an effective precursor to in vitro investigations, we examined and assessed the therapeutic potentials of aggregation-prone peptides (APPs) derived from TTR, against V30 M TTR amyloid fibrils, computationally. Out of five experimentally corroborated APPs availed for this study, molecular dynamics simulation analysis endorses APP TAVVTN to be an effective beta-sheet breaker against V30 M TTR amyloid fibrils. Furthermore, consistent findings from various molecular trajectory analyses, residual frustration analysis and simulated thermal denaturation have indicated that APP TAVVTN could effectually relater the structural dynamics of V30 M TTR amyloid fibrils, to conformationally digress it away from its amyloidogenic propensities. Hence, based on consistent unvarying findings from numerous adept computational pipelines, APP TAVVTN could be an efficacious analeptic to therapeutically intervene and mitigate the amyloidogenic propensities of V30 M TTR amyloid fibrils, thereby ameliorating the pathological ramifications due to FAP.  相似文献   

4.
The misfolding of transthyretin (TTR), including rate-limiting tetramer dissociation and partial monomer denaturation, is sufficient for TTR misassembly into amyloid and other abnormal quaternary structures associated with senile systemic amyloidosis, familial amyloid polyneuropathy, and familial amyloid cardiomyopathy. Monovalent small molecules that bind to one or both of the unoccupied thyroid hormone binding sites at the TTR quaternary structure interface stabilize the native state, raising the kinetic barrier for tetramer dissociation sufficiently that the rate of dissociation, and therefore amyloidosis, becomes slow. Bivalent amyloid inhibitors that bind to both binding sites simultaneously are reported herein. The candidate bivalent inhibitors are generally unable to bind to the native TTR tetramer and typically do not engage in monovalent binding owing to a strong inhibitor orientation preference. However, the TTR quaternary structure can assemble around several of the bivalent inhibitors if the inhibitor intercepts the protein before assembly occurs. Some of the wild-type TTR.bivalent inhibitor complexes prepared in this fashion retain a tetrameric structure when subjected to substantial denaturation stresses (8 M urea, 120 h). The best bivalent inhibitor reduced acid-mediated TTR (3.6 microM) amyloid fibril formation to 6% of that exhibited by TTR in the absence of inhibitor, a significant improvement over the approximately 30% observed for the best monovalent inhibitors (3.6 microM, 72 h). The apparent dissociation rate of the best bivalent inhibitor is effectively zero, consistent with the idea that TTR tetramer dissociation and inhibitor dissociation are linked-as a result of the inhibitor-templating tetramer assembly. X-ray cocrystal structures of two of the complexes demonstrate that the bivalent inhibitors simultaneously occupy both sites in TTR, consistent with the 1:1 binding stoichiometry derived from HPLC analysis. The purpose of this study was to demonstrate that bivalent inhibitors could be useful; what resulted are the best inhibitors produced to date. In this context, molecules capable of intercepting TTR during folding and assembly in the lumen of the endoplasmic reticulum would be of obvious interest.  相似文献   

5.
One of the molecular hallmarks of amyloidoses is ordered protein aggregation involving the initial formation of soluble protein oligomers that eventually grow into insoluble fibrils. The identification and characterization of molecular species critical for amyloid fibril formation and disease development have been the focus of intense analysis in the literature. Here, using photo-induced cross-linking of unmodified proteins (PICUP), we studied the early stages of oligomerization of human transthyretin (TTR), a plasma protein involved in amyloid diseases (ATTR amyloidosis) with multiple clinical manifestations. Upon comparison, the oligomerization processes of wild-type TTR (TTRwt) and several TTR variants (TTRV30M, TTRL55P, and TTRT119M) clearly show distinct oligomerization kinetics for the amyloidogenic variants but a similar oligomerization mechanism. The oligomerization kinetics of the TTR amyloidogenic variants under analysis showed a good correlation with their amyloidogenic potential, with the most amyloidogenic variants aggregating faster (TTRL55P > TTRV30M > TTRwt). Moreover, the early stage oligomerization mechanism for these variants involves stepwise addition of monomeric units to the growing oligomer. A completely different behavior was observed for the nonamyloidogenic TTRT119M variant, which does not form oligomers in the same acidic conditions and even for longer incubation times. Thorough characterization of the initial steps of TTR oligomerization is critical for better understanding the origin of ATTR cytotoxicity and developing novel therapeutic strategies for the treatment of ATTR amyloidosis.  相似文献   

6.
It is well established that the formation of transthyretin (TTR) amyloid fibrils is linked to the destabilization and dissociation of its tetrameric structure into insoluble aggregates. Isotope labeling is used for the study of TTR by NMR, neutron diffraction, and mass spectrometry (MS). Here MS, thioflavin T fluorescence, and crystallographic data demonstrate that while the X‐ray structures of unlabeled and deuterium‐labeled TTR are essentially identical, subunit exchange kinetics and amyloid formation are accelerated for the deuterated protein. However, a slower subunit exchange is noted in deuterated solvent, reflecting the poorer solubility of non‐polar protein side chains in such an environment. These observations are important for the interpretation of kinetic studies involving deuteration. The destabilizing effects of TTR deuteration are rather similar in character to those observed for aggressive mutations of TTR such as L55P (associated with familial amyloid polyneuropathy).  相似文献   

7.
Transthyretin (TTR) is a sensitive marker of protein-energy malnutrition and changes in serum and expression levels during protein and energy deficiency are well described. However, little is known about structural modifications of TTR during protein and/or energy deprivation. Therefore, the aim of this study was to determine the effects of protein inadequacies on post-translational modifications of TTR. For this purpose, male Wistar rats were fed a diet with either casein or gelatine as sole protein source subsequent to a protein wash-out period. Changes in TTR serum levels as well as other markers of nutritional status as body weight, food consumption, total serum protein and serum RBP4 levels as well as antioxidative capacity were determined. Post-translational modifications of TTR were examined by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) analysis. The rats from the gelatine group revealed a marked change in the post-translational modification pattern of TTR which was reflected by a significant elevation of sulfonated TTR and which was inversely correlated to the antioxidative capacity. Additionally, the elevation of sulfonated TTR was accompanied by a decrease in body weight and food consumption, low antioxidative capacity as well as a deprivation of serum TTR, RBP4 and total serum protein levels in the animals of the gelatine group. Protein-energy malnutrition leads therefore next to changes in TTR serum concentration, also to changes in the post-translational modification pattern of TTR. Such changes are probably induced by protein-energy malnutrition-driven oxidative stress and might be linked to alterations in protein function and stability.  相似文献   

8.
Inhibition of amyloid fibril formation by stabilization of the native form of the protein transthyretin (TTR) is a viable approach for the treatment of familial amyloid polyneuropathy that has been gaining momentum in the field of amyloid research. The TTR stabilizer molecules discovered to date have shown efficacy at inhibiting fibrilization in vitro but display impairing issues of solubility, affinity for TTR in the blood plasma and/or adverse effects. In this study we present a benchmark of four protein- and ligand-based virtual screening (VS) methods for identifying novel TTR stabilizers: (i) two-dimensional (2D) similarity searches with chemical hashed, pharmacophore, and UNITY fingerprints, (ii) 3D searches based on shape, chemical, and electrostatic similarity, (iii) LigMatch, a new ligand-based method which uses multiple templates and combines 3D geometric hashing with a 2D preselection process, and (iv) molecular docking to consensus X-ray crystal structures of TTR. We illustrate the potential of the best-performing VS protocols to retrieve promising new leads by ranking a tailored library of 2.3 million commercially available compounds. Our predictions show that the top-scoring molecules possess distinctive features from the known TTR binders, holding better solubility, fraction of halogen atoms, and binding affinity profiles. To the best of our knowledge, this is the first attempt to rationalize the utilization of a large battery of in silico screening techniques toward the identification of a new generation of TTR amyloid inhibitors.  相似文献   

9.
From a subtracting cDNA library constructed from normal liver versus human primary hepatic cancer (PHC) a cDNA clone pG8 was isolated. Using it as a probe, RNA extracted from one human liver and 9 PHC samples were analyzed by Northern hybridization. As expected, its mRNA was highly expressed in liver; however, the expression was strikingly suppressed in PHC. Only weak signal was observed in 2 out of 9 PHC, while no signal was detectable in the other 7 samples. Utilizing pG8 as a probe, DNA from the same PHC specimens was analyzed after MspI digestion and Southern hybridization. Deletion of DNA fragment was observed in 4 out of 9 samples. In further study of cancer and non-cancerous liver from other 7 PHC patients, similar deletion of DNA fragments in cancer was observed in 4 out of 7 samples. After sequencing of the clone of 572 bp, it was unexpectedly found that pG8 was completely homologous to the coding sequence of transthyretin, TTR gene, as TTR (or prealbumin) gene has been known to be linked to a hereditary disorder, familial amyloidosis (FAP), and related to thyroxine transport and binding to retinol-RBP (the retinol binding protein) complex. This is the first report of a study on TTR in human primary hepatic cancer. Since TTR gene was strikingly suppressed in mRNA expression and possibly defective in its gene structure, it was strongly implicated that TTR might be an important gene marker or a candidate of anti-oncogene for human PHC. The biological activity of TTR gene is under study.  相似文献   

10.
Protein native state stabilization imposed by small molecule binding is an attractive strategy to prevent the misfolding and misassembly processes associated with amyloid diseases. Transthyretin (TTR) amyloidogenesis requires rate-limiting tetramer dissociation before misassembly of a partially denatured monomer ensues. Selective stabilization of the native TTR tetramer over the dissociative transition state by small molecule binding to both thyroxine binding sites raises the kinetic barrier of tetramer dissociation, preventing amyloidogenesis. Assessing the amyloidogenicity of a TTR tetramer having only one amyloidogenesis inhibitor (I) bound is challenging because the two small molecule binding constants are generally not distinct enough to allow for the exclusive formation of TTR.I in solution to the exclusion of TTR.I(2) and unliganded TTR. Herein, we report a method to tether one fibril formation inhibitor to TTR by disulfide bond formation. Occupancy of only one of the two thyroxine binding sites is sufficient to inhibit tetramer dissociation in 6.0 M urea and amyloidogenesis under acidic conditions by imposing kinetic stabilization on the entire tetramer. The sufficiency of single occupancy for stabilizing the native state of TTR provides the incentive to search for compounds displaying striking negative binding cooperativity (e.g., K(d1) in nanomolar range and K(d2) in the micromolar to millimolar range), enabling lower doses of inhibitor to be employed in the clinic, mitigating potential side effects.  相似文献   

11.
Primary systemic amyloidosis (AL) is characterized by the overproduction of immunoglobulin light chain proteins by a monoclonal, terminally differentiated B-lymphocyte or plasma cell clone. The free immunoglobulin light chains are deposited in an abnormal conformation as amyloid in a variety of organs in the body. The mechanism of amyloid formation is not well understood, but appears to be associated with some form of cleavage of the immunoglobulin light chain with subsequent aggregate formation. In an attempt to characterize the structure of amyloid-forming light chain proteins we developed an on-line immunoaffinity purification and subsequent characterization of free kappa and free lambda immunoglobulin light chains by electrospray ionization mass spectrometry. The methodology is totally automated and requires 20 micro L of serum. Mass spectral analysis of Bence Jones proteins under non-denaturing conditions was also utilized to examine the tertiary and quaternary structure of light chain proteins and clearly shows covalent dimer formation of lambda type light chain. This type of on-line assay may prove helpful in elucidating distinguishing features capable of discriminating AL from benign monoclonal gammopathies of undetermined significance as well as diagnosing AL.  相似文献   

12.
Hereditary Transthyretin-associated amyloidosis (ATTR) is an autosomal dominant protein-folding disorder with adult-onset caused by mutation of transthyretin (TTR). TTR is characterized by extracellular deposition of amyloid, leading to loss of autonomy and finally, death. More than 100 distinct mutations in TTR gene have been reported from variable age of onset, clinical expression and penetrance data. Besides, the cure for the disease remains still obscure. Further, the prioritizing of mutations concerning the characteristic features governing the stability and pathogenicity of TTR mutant proteins remains unanswered, to date and thus, a complex state of study for researchers. Herein, we provide a full report encompassing the effects of every reported mutant model of TTR protein about the stability, functionality and pathogenicity using various computational tools. In addition, the results obtained from our study were used to create TTRMDB (Transthyretin mutant database), which could be easy access to researchers at http://vit.ac.in/ttrmdb.  相似文献   

13.
食用油甘油三酯质谱分析方法的研究进展   总被引:1,自引:0,他引:1  
该文对质谱鉴定技术及其与色谱联用的分析方法(包括直接进样质谱分析、气相色谱质谱联用技术、超临界流体与质谱联用技术和液相色谱质谱联用技术)在甘油三酯分析方面的应用进行了综述,评述了各类分析方法的优缺点,对常用的脂质分析数据库进行了介绍,并对甘油三酯分析方法的发展及应用作了展望。  相似文献   

14.
Systemic amyloidosis is caused by the misfolding of a circulating amyloid precursor protein and the deposition of amyloid fibrils in multiple organs. Chemical and biophysical analysis of amyloid fibrils from human AL and murine AA amyloidosis reveal the same fibril morphologies in different tissues or organs of one patient or diseased animal. The observed structural similarities concerned the fibril morphology, the fibril protein primary and secondary structures, the presence of post‐translational modifications and, in case of the AL fibrils, the partially folded characteristics of the polypeptide chain within the fibril. Our data imply for both analyzed forms of amyloidosis that the pathways of protein misfolding are systemically conserved; that is, they follow the same rules irrespective of where inside one body fibrils are formed or accumulated.  相似文献   

15.
Systemic amyloidosis is caused by the misfolding of a circulating amyloid precursor protein and the deposition of amyloid fibrils in multiple organs. Chemical and biophysical analysis of amyloid fibrils from human AL and murine AA amyloidosis reveal the same fibril morphologies in different tissues or organs of one patient or diseased animal. The observed structural similarities concerned the fibril morphology, the fibril protein primary and secondary structures, the presence of post-translational modifications and, in case of the AL fibrils, the partially folded characteristics of the polypeptide chain within the fibril. Our data imply for both analyzed forms of amyloidosis that the pathways of protein misfolding are systemically conserved; that is, they follow the same rules irrespective of where inside one body fibrils are formed or accumulated.  相似文献   

16.
Stabilization of tetrameric transthyretin (TTR) by binding of small ligands is a current strategy aimed at inhibiting amyloid fibrillogenesis in transthyretin-associated pathologies, such as senile systemic amyloidosis (SSA) and familial amyloidotic polyneuropathy (FAP). A kinetic assay is developed for rapid evaluation of compounds as potential in vitro inhibitors in a high-throughput screening format. It is based on monitoring the time-dependent increase of absorbance due to turbidity occurring by acid-induced protein aggregation. The method uses the highly amyloidogenic Y78F mutant of human transthyretin (heterogously expressed in Escherichia coli cells). Initial rates of protein aggregation at different inhibitor concentrations follow a monoexponential dose-response curve from which inhibition parameters are calculated. For the assay development, thyroid hormones and nonsteroidal antiinflamatory drugs were chosen among other reference compounds. Some of them are already known to be in vitro inhibitors of TTR amyloidogenesis. Analysis time is optimized to last 1.5 h, and the method is implemented in microtiter plates for screening of libraries of potential fibrillogenesis inhibitors.  相似文献   

17.
The propensity of protein molecules to self-assemble into highly ordered, fibrillar aggregates lies at the heart of understanding many disorders ranging from Alzheimer's disease to systemic lysozyme amyloidosis. In this paper we use highly accurate kinetic measurements of amyloid fibril growth in combination with spectroscopic tools to quantify the effect of modifications in solution conditions and in the amino acid sequence of human lysozyme on its propensity to form amyloid fibrils under acidic conditions. We elucidate and quantify the correlation between the rate of amyloid growth and the population of nonnative states, and we show that changes in amyloidogenicity are almost entirely due to alterations in the stability of the native state, while other regions of the global free-energy surface remain largely unmodified. These results provide insight into the complex dynamics of a macromolecule on a multidimensional energy landscape and point the way for a better understanding of amyloid diseases.  相似文献   

18.
Matrix-assisted laser desorption/ionization (MALDI) coupled with ion mobility–mass spectrometry (IM–MS) provides a rapid (μs–ms) means for the two-dimensional (2D) separation of complex biological samples (e.g., peptides, oligonucleotides, glycoconjugates, lipids, etc.), elucidation of solvent-free secondary structural elements (e.g., helices, β-hairpins, random coils, etc.), rapid identification of post-translational modifications (e.g., phosphorylation, glycosylation, etc.) or ligation of small molecules, and simultaneous and comprehensive sequencing information of biopolymers. In IM–MS, protein-identification information is complemented by structural characterization data, which is difficult to obtain using conventional proteomic techniques. New avenues for enhancing the figures of merit (e.g., sensitivity, limits of detection, dynamic range, and analyte selectivity) and optimizing IM–MS experimental parameters are described in the context of deriving new information at the forefront of proteomics research.  相似文献   

19.
The formation of partially unfolded intermediates through conformational excursions out of the native state is the starting point of many diseases involving protein aggregation. Therapeutic strategies often aim to stabilize the native structure and prevent the formation of intermediates that are also cytotoxic in vivo. However, their transient nature and low population makes it difficult to characterize these intermediates. We have probed the backbone dynamics of transthyretin (TTR) over an extended timescale by using NMR spectroscopy and MD simulations. The location and extent of these motions indicates that the backbone flexibility of TTR is a cause of dissociation and destabilization, both of which are responsible for fibril formation. Importantly, approximately 10 % of wild‐type TTR exists in an intermediate state, which increased to up to 28 % for pathogenic TTR mutants, for which the formation of the intermediate state is shown to be energetically more favorable compared to the wild type. This result suggests an important role for the intermediates in TTR amyloidosis.  相似文献   

20.
Pathological amyloid proteins are associated with degenerative and neurodegenerative diseases. These amyloid proteins develop as oligomer, fibrillar, and plaque forms, due to the denatured and unstable status of the amyloid monomers. Specifically, the development of fibrillar amyloid proteins has been investigated through several experimental studies. To understand the generation of amyloid fibrils, environmental factors such as point mutations, pH, and polymorphic characteristics have been considered. Recently, amyloid fibril studies related to end‐capping effects have been conducted to understand amyloid fibril development. However, atomic‐level studies to determine the stability and mechanical properties of amyloid fibrils based on end capping have not been undertaken. In this study, we show that end capping alters the structural characteristics and conformations of transthyretin (TTR) amyloid fibrils by using molecular dynamics (MD) simulations. Variation in the structural conformations and characteristics of the TTR fibrils through end capping are observed, due to the resulting electrostatic energies and hydrophobicity characteristics. Moreover, the end capping changes the mechanical properties of TTR fibrils. Our results shed light on amyloid fibril formation under end‐capping conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号