首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Quaestiones Mathematicae》2013,36(2):159-164
Abstract

The Steiner distance d(S) of a set S of vertices in a connected graph G is the minimum size of a connected subgraph of G that contains S. The Steiner number s(G) of a connected graph G of order p is the smallest positive integer m for which there exists a set S of m vertices of G such that d(S) = p—1. A smallest set S of vertices of a connected graph G of order p for which d(S) = p—1 is called a Steiner spanning set of G. It is shown that every connected graph has a unique Steiner spanning set. If G is a connected graph of order p and k is an integer with 0 ≤ k ≤ p—1, then the kth Steiner number sk(G) of G is the smallest positive integer m for which there exists a set S of m vertices of G such that d(S) = k. The sequence so(G),s1 (G),…,8p-1(G) is called the Steiner sequence of G. Steiner sequences for trees are characterized.  相似文献   

2.
All induced connected subgraphs of a graphG contain a dominating set of pair-wise adjacent vertices if and only if there is no induced subgraph isomorphic to a path or a cycle of five vertices inG. Moreover, the problem of finding any given type of connected dominating sets in all members of a classG of graphs can be reduced to the graphsGG that have a cut-vertex or do not contain any cutsetS dominated by somes∈S. This research was supported in part by the “AKA” Research Fund of the Hungarian Academy of Sciences.  相似文献   

3.
Let G(OS)\mathbf{G}(\mathcal{O}_{S}) be an S-arithmetic subgroup of a connected, absolutely almost simple linear algebraic group G over a global function field K. We show that the sum of local ranks of G determines the homological finiteness properties of G(OS)\mathbf{G}(\mathcal{O}_{S}) provided the K-rank of G is 1. This shows that the general upper bound for the finiteness length of G(OS)\mathbf{G}(\mathcal{O}_{S}) established in an earlier paper is sharp in this case.  相似文献   

4.
Tutte's 3‐Flow Conjecture states that every 2‐edge‐connected graph with no 3‐cuts admits a 3‐flow. The 3‐Flow Conjecture is equivalent to the following: let G be a 2‐edge‐connected graph, let S be a set of at most three vertices of G; if every 3‐cut of G separates S then G has a 3‐flow. We show that minimum counterexamples to the latter statement are 3‐connected, cyclically 4‐connected, and cyclically 7‐edge‐connected.  相似文献   

5.
For two vertices u and v of a connected graph G, the set I(u,v) consists of all those vertices lying on a u-v geodesic in G. For a set S of vertices of G, the union of all sets I(u,v) for u, v S is denoted by I(S). A set S is a convex set if I(S) = S. The convexity number con(G) of G is the maximum cardinality of a proper convex set of G. A convex set S in G with |S| = con(G) is called a maximum convex set. A subset T of a maximum convex set S of a connected graph G is called a forcing subset for S if S is the unique maximum convex set containing T. The forcing convexity number f(S, con) of S is the minimum cardinality among the forcing subsets for S, and the forcing convexity number f(G, con) of G is the minimum forcing convexity number among all maximum convex sets of G. The forcing convexity numbers of several classes of graphs are presented, including complete bipartite graphs, trees, and cycles. For every graph G, f(G, con) con(G). It is shown that every pair a, b of integers with 0 a b and b is realizable as the forcing convexity number and convexity number, respectively, of some connected graph. The forcing convexity number of the Cartesian product of H × K 2 for a nontrivial connected graph H is studied.  相似文献   

6.
 For two vertices u and v of a connected graph G, the set I[u,v] consists of all those vertices lying on a uv shortest path in G, while for a set S of vertices of G, the set I[S] is the union of all sets I[u,v] for u,vS. A set S is convex if I[S]=S. The convexity number con(G) of G is the maximum cardinality of a proper convex set of G. The clique number ω(G) is the maximum cardinality of a clique in G. If G is a connected graph of order n that is not complete, then n≥3 and 2≤ω(G)≤con(G)≤n−1. It is shown that for every triple l,k,n of integers with n≥3 and 2≤lkn−1, there exists a noncomplete connected graph G of order n with ω(G)=l and con(G)=k. Other results on convex numbers are also presented. Received: August 19, 1998 Final version received: May 17, 2000  相似文献   

7.
Let G = (V, E) be a connected graph. A set D ? V is a set-dominating set (sd-set) if for every set T ? V ? D, there exists a nonempty set S ? D such that the subgraph 〈ST〉 induced by ST is connected. The set-domination number γs(G) of G is the minimum cardinality of a sd-set. In this paper we develop properties of this new parameter and relate it to some other known domination parameters.  相似文献   

8.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. It is known [J Graph Theory 35 (2000), 21–45] that if G is a connected graph of order n > 10 with minimum degree at least 2, then γt(G) ≤ 4n/7 and the (infinite family of) graphs of large order that achieve equality in this bound are characterized. In this article, we improve this upper bound of 4n/7 for 2‐connected graphs, as well as for connected graphs with no induced 6‐cycle. We prove that if G is a 2‐connected graph of order n > 18, then γt(G) ≤ 6n/11. Our proof is an interplay between graph theory and transversals in hypergraphs. We also prove that if G is a connected graph of order n > 18 with minimum degree at least 2 and no induced 6‐cycle, then γt(G) ≤ 6n/11. Both bounds are shown to be sharp. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 55–79, 2009  相似文献   

9.
Given a weighted undirected graph G and a subgraph S of G, we consider the problem of adding a minimum-weight set of edges of G to S so that the resulting subgraph satisfies specified (edge or vertex) connectivity requirements between pairs of nodes of S. This has important applications in upgrading telecommunication networks to be invulnerable to link or node failures. We give a polynomial algorithm for this problem when S is connected, nodes are required to be at most 2-connected, and G is planar. Applications to network design and multicommodity cut problems are also discussed.  相似文献   

10.
A subset S of vertices of a graph G is called cyclable in G if there is in G some cycle containing all the vertices of S. We denote by α(S, G) the number of vertices of a maximum independent set of G[S]. We prove that if G is a 3‐connected graph or order n and if S is a subset of vertices such that the degree sum of any four independent vertices of S is at least n + 2α(S, G) −2, then S is cyclable. This result implies several known results on cyclability or Hamiltonicity. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 191–203, 2000  相似文献   

11.
We ask, When does a graph G have a subgraph Γ such that the vertices of odd degree in Γ form a specified set S ? V(G), such that G - E(Γ) is connected? If such a subgraph can be found for a suitable choice of S, then this can be applied to problems such as finding a spanning eulerian subgraph of G. We provide a general method, with applications.  相似文献   

12.
A graph G is degree-continuous if the degrees of every two adjacent vertices of G differ by at most 1. A finite nonempty set S of integers is convex if k S for every integer k with min(S)kmax(S). It is shown that for all integers r > 0 and s 0 and a convex set S with min(S) = r and max(S) = r+s, there exists a connected degree-continuous graph G with the degree set S and diameter 2s+2. The minimum order of a degree-continuous graph with a prescribed degree set is studied. Furthermore, it is shown that for every graph G and convex set S of positive integers containing the integer 2, there exists a connected degree-continuous graph H with the degree set S and containing G as an induced subgraph if and only if max(S)(G) and G contains no r-regular component where r = max(S).  相似文献   

13.
–We consider two random graphs G1, G2, both on the same vertex set. We ask whether there is a non‐trivial set of vertices S, so that S induces a connected subgraph both in G1 and in G2. We determine the threshold for the appearance of such a subset, as well as the size of the largest such subset. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 45, 498–512, 2014  相似文献   

14.
Let G=(V,E) be a connected graph. A dominating set S of G is a weakly connected dominating set of G if the subgraph (V,E∩(S×V)) of G with vertex set V that consists of all edges of G incident with at least one vertex of S is connected. The minimum cardinality of a weakly connected dominating set of G is the weakly connected domination number, denoted . A set S of vertices in G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. In this paper, we show that . Properties of connected graphs that achieve equality in these bounds are presented. We characterize bipartite graphs as well as the family of graphs of large girth that achieve equality in the lower bound, and we characterize the trees achieving equality in the upper bound. The number of edges in a maximum matching of G is called the matching number of G, denoted α(G). We also establish that , and show that for every tree T.  相似文献   

15.
A set S of vertices in a graph G is a packing if the vertices in S are pairwise at distance at least 3 apart in G. The packing number of G, denoted by ρ(G), is the maximum cardinality of a packing in G. Favaron [Discrete Math. 158 (1996), 287–293] showed that if G is a connected cubic graph of order n different from the Petersen graph, then ρ(G) ≥ n/8. In this paper, we generalize Favaron’s result. We show that for k ≥ 3, if G is a connected k-regular graph of order n that is not a diameter-2 Moore graph, then ρ(G) ≥ n/(k2 ? 1).  相似文献   

16.
A set S of vertices in a graph G = (V, E) without isolated vertices is a total outer-connected dominating set (TCDS) of G if S is a total dominating set of G and G[V − S] is connected. The total outer-connected domination number of G, denoted by γ tc (G), is the minimum cardinality of a TCDS of G. For an arbitrary graph without isolated vertices, we obtain the upper and lower bounds on γ tc (G) + γ tc ($ \bar G $ \bar G ), and characterize the extremal graphs achieving these bounds.  相似文献   

17.
It is well known that a cancellative semigroup can be embedded into a group if it satisfies “Ore’s condition” of being either left or right reversible. However Ore’s condition is by no means necessary, so it is natural to ask which subsemigroups of a group are left or right reversible, or satisfy a condition of a similar type. In the present paper we study this question on open subsemigroups of connected locally compact groups; we also show how to use concepts related with reversibility to prove assertions like the following: Suppose thatS is an open subsemigroup of a connected Lie groupG such that 1 ∈ . IfG is solvable or ifS is invariant thenS is connected andS determinesG uniquely; that is to say, ifS can be embedded as an open subsemigroup into a connected Lie groupG’ thenG’ is isomorphic withG. Examples show that there are non-connected open subsemigroupsS of Sl(2,R) with 1 ∈ and such that the uniqueness assertion fails. The author gratefully acknowledges the support he received from the Alexander von Humboldt Foundation during the time he prepared this paper.  相似文献   

18.
Let G be a connected graph of order n. The algebraic connectivity of G is the second smallest eigenvalue of the Laplacian matrix of G. A dominating set in G is a vertex subset S such that each vertex of G that is not in S is adjacent to a vertex in S. The least cardinality of a dominating set is the domination number. In this paper, we prove a sharp upper bound on the algebraic connectivity of a connected graph in terms of the domination number and characterize the associated extremal graphs.  相似文献   

19.
Linda Eroh 《Discrete Mathematics》2008,308(18):4212-4220
Let G be a connected graph and SV(G). Then the Steiner distance of S, denoted by dG(S), is the smallest number of edges in a connected subgraph of G containing S. Such a subgraph is necessarily a tree called a Steiner tree for S. The Steiner interval for a set S of vertices in a graph, denoted by I(S) is the union of all vertices that belong to some Steiner tree for S. If S={u,v}, then I(S) is the interval I[u,v] between u and v. A connected graph G is 3-Steiner distance hereditary (3-SDH) if, for every connected induced subgraph H of order at least 3 and every set S of three vertices of H, dH(S)=dG(S). The eccentricity of a vertex v in a connected graph G is defined as e(v)=max{d(v,x)|xV(G)}. A vertex v in a graph G is a contour vertex if for every vertex u adjacent with v, e(u)?e(v). The closure of a set S of vertices, denoted by I[S], is defined to be the union of intervals between pairs of vertices of S taken over all pairs of vertices in S. A set of vertices of a graph G is a geodetic set if its closure is the vertex set of G. The smallest cardinality of a geodetic set of G is called the geodetic number of G and is denoted by g(G). A set S of vertices of a connected graph G is a Steiner geodetic set for G if I(S)=V(G). The smallest cardinality of a Steiner geodetic set of G is called the Steiner geodetic number of G and is denoted by sg(G). We show that the contour vertices of 3-SDH and HHD-free graphs are geodetic sets. For 3-SDH graphs we also show that g(G)?sg(G). An efficient algorithm for finding Steiner intervals in 3-SDH graphs is developed.  相似文献   

20.
In this paper we introduce a new hamiltonian-like property of graphs. A graph G is said to be cyclable if for each orientation D of G there is a set S of vertices such that reversing all the arcs of D with one end in S results in a hamiltonian digraph. We characterize cyclable complete multipartite graphs and prove that the fourth power of any connected graph G with at least five vertices is cyclable. If, moreover, G is two-connected then its cube is cyclable. These results are shown to be best possible in a sense. © 1998 John Wiley & Sons, Inc. J Graph Theory 28: 13–30, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号