首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scanning electrochemical microscopy (SECM) still lacks reliable means for performing constant-distance imaging experiments. We demonstrate, for the first time, that the same negative alternating current (AC) feedback can be observed on approach to an insulator and an unbiased conductor at optimal experimental conditions. This leads to a novel constant-distance imaging mode. To perform AC-SECM imaging, only minor modifications of the existing SECM set-up were necessary. The new constant-distance AC-SECM imaging was conducted to provide topographical information not affected by variations in sample conductivity and reactivity. Furthermore, simultaneous AC and DC SECM measurements were carried out to demonstrate that both topographical and chemical information could be revealed.  相似文献   

2.
A Prussian Blue (PB) film modified disk ultramicroelectrode (UME) was fabricated by electrochemical deposition technique on a Pt-disk UME. The electrocatalytical reductions of hydrogen peroxide derived from glucose oxidase (GOD) on this modified UME were investigated. The enzymatic biochemical reactivity was imaged by scanning electrochemical microscopy (SECM) utilizing the PB film modified UME. It is evident that sensitivity and spatial resolution for hydrogen peroxide measurement were improved obviously. SECM images obtained clearly revealed the concentration profile of the reaction products around the enzymes. The PB film modified microelectrode is in the nature of simple preparation, high catalytic activity on hydrogen peroxide and substrate selectivity for SECM etc.  相似文献   

3.
Different gold surfaces modified by carbon-spray have been investigated by scanning electron microscopy (SEM) and scanning electrochemical microscopy (SECM). A transformation of the SECM image to a distance-location profile is proposed which assists the correlation of both images. The structures found in the transformed SECM images of carbon-spray layers on gold substrates can be explained by the topographic features visible in the SEM pictures. Tempering the carbon spray results in an increased density of electrochemically reactive carbon particles which could be confirmed by cyclic voltammetric investigations. Gold minigrids modified with carbon spray expose some areas of especially large currents which could not be predicted from their SEM images. This effect may result from particles located at the edge of a wire intersection having relatively large active surfaces per particle. They contribute significantly to the total current of the minigrid.  相似文献   

4.
This work establishes the compatibility of surface plasmon resonance imaging (SPR-i) with the visualization of localized electropolymerization. The "writing" of polypyrrole and polypyrrole-oligonucleotide patterns onto thin gold films is demonstrated using scanning electrochemical microcopy (SECM), while an optical method, SPR-i, simultaneously detected the formed micropatterns. The combination of these two methods, SECM/SPR-i, has the advantage of not only controlling the patterning process but also providing unique information on the micropattern formation. The influence of the pulsing time and the monomer concentration on the spot size and its characteristics has been investigated in detail using SPR-i. Fluorescence microscopy and atomic force microscopy have also been used to support the data obtained by SPR-i.  相似文献   

5.
Redox-active ferrocenyl (Fc)-functionalized poly(propylenimine) (PPI) dendrimers solubilized in aqueous media by complexation of the Fc end groups with beta-cyclodextrin (betaCD) were immobilized at monolayers of betaCD on glass ("molecular printboards") via multiple host-guest interactions. The directed immobilization of the third-generation dendrimer-betaCD assembly G3-PPI-(Fc)16-(betaCD)16 at the printboard was achieved by supramolecular microcontact printing. The redox activity of the patterned dendrimers was mapped by scanning electrochemical microscopy (SECM) in the positive feedback mode using [IrCl(6)](3-) as a mediator. Local oxidation of the Fc-dendrimers by the microelectrode-generated [IrCl(6)](2-) resulted in an effective removal of the Fc-dendrimers from the host surface since the oxidation of Fc to the oxidized form (Fc+) leads to a concomitant loss of affinity for betaCD. Thus, SECM provided a way not only to image the surface, but also to control the binding of the Fc-terminated dendrimers at the molecular printboard. Additionally, the electrochemical desorption process could be monitored in time as the dendrimer patterns were gradually erased upon multiple scans.  相似文献   

6.
ABSTRACT: The morphology of a live cell reflects the organization of the cytoskeleton and the healthy status of the cell. We established a label-free platform for monitoring the changing morphology of live cells in real time based on scanning electrochemical microscopy (SECM). The dynamic morphology of a live human bladder cancer cell (T24) was revealed by time-lapse SECM with dissolved oxygen in the medium solution as the redox mediator. Detailed local movements of cell membrane were presented by time-lapse cross section lines extracted from time-lapse SECM. Vivid dynamic morphology is presented by a movie made of time-lapse SECM images. The morphological change of the T24 cell by non-physiological temperature is in consistence with the morphological feature of early apoptosis. To obtain dynamic cellular morphology with other methods is difficult. The non-invasive nature of SECM combined with high resolution realized filming the movements of live cells.  相似文献   

7.
Within this work we present a ‘proof of principle’ study for the use of scanning electrochemical microscopy (SECM) to detect and image biomolecular interactions in a label-free assay as a potential alternative to current fluorescence techniques. Screen-printed carbon electrodes were used as the substrate for the deposition of a dotted array, where the dots consist of biotinylated polyethyleneimine. These were then further derivatised, first with neutravidin and then with a biotinylated antibody to the protein neuron specific enolase (NSE). SECM using a ferrocene carboxylic acid mediator showed clear differences between the array and the surrounding unmodified carbon. Imaging of the arrays before and following exposure to various concentrations of the antigen showed clear evidence for specific binding of the NSE antigen to the antibody derivatised dots. Non-specific binding was quantified. Control experiments with other proteins showed only non-specific binding across the whole of the substrate, thereby confirming that specific binding does occur between the antibody and antigen at the surface of the dots. Binding of the antigen was accompanied by a measured increase in current response, which may be explained in terms of protein electrostatic interaction and hydrophobic interactions to the mediator, thereby increasing the localised mediator flux. A calibration curve was obtained between 500 fg mL−1 to 200 pg mL−1 NSE which demonstrated a logarithmic relationship between the current change upon binding and antigen concentration without the need for any labelling of the substrate.  相似文献   

8.
Scanning electrochemical microscopy (SECM) has been proven to be a valuable technique for the quantitative investigation and surface analysis of a wide range of processes that occur at interfaces. In particular, there is a great deal of interest in studying the kinetics of charge transfer characteristics at the solid/liquid and liquid/liquid interface. This overview outlines recent advances and applications of SECM to the investigation of charge transfer reactions at the solid/liquid interface and liquid/liquid interface.  相似文献   

9.
The electrochemical behavior of a redox-active, ferrocene-modified ionic liquid (1-ferrocenylmethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) in acetonitrile and in an ionic liquid electrolyte (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) is reported. Reversible electrochemical behavior was observed in each electrolyte with responses typical of those for unmodified ferrocene observed in each medium. In the ionic liquid electrolyte, the diffusion coefficient of the redox-active ionic liquid increased by a factor of 5 upon increasing the temperature from 27 to 90 degrees C. The kinetics of electron transfer across the ionic liquid/electrode interface were studied using cyclic voltammetry, and the standard heterogeneous electron transfer rate constant, k (0) was determined to be 4.25 x 10 (-3) cm s (-1). Scanning electrochemical microscopy was then also used to probe the heterogeneous kinetics at the interface between the ionic liquid and the solid electrode and conventional kinetic SECM theory was used to determine k (0). The k (0) value obtained using SECM was higher than that determined using cyclic voltammetry. These results indicate that SECM is a very useful technique for studying electron transfer dynamics in ionic liquids.  相似文献   

10.
Electrochemically codeposited palladium nanoparticles (Pd NPs) and reduced graphene oxide (ERGO-Pd) were used as catalyst for Suzuki cross coupling reactions. The catalyst was characterized by various analytical techniques. The mean particle size of Pd was found to be 5.7 ± 1.8 nm. The ERGO-Pd catalyst demonstrated excellent catalytic activity and recyclability for Suzuki cross coupling reactions. The remarkable reactivity of the ERGO-Pd catalyst toward cross-coupling reactions is attributed to the high degree of the dispersion of Pd NPs on reduced graphene oxide with narrow size distribution from 3 to 9 nm.  相似文献   

11.
<正>Comparison in electron transfer(ET) processes from decamethyferrocene(DMFe) in nitrobenzene(NB) to ferric ion in aqueous phase was investigated for the first time by the scanning electrochemical microscopy(SECM).As compared with the system of Fe(CN)_6~(3-)-DMFe,the ET rate obtained from Fe~(3+)-DMFe was lower in spite of larger driving force,which may arise from the effect of reorganization energy.Otherwise,the effect of common ion on rate constants was also probed and results suggested additional complexity of the ET mechanism between Fe(CN)_6~(3-) and DMFe.  相似文献   

12.
Both the structure and dynamics of biomolecules are known to be essential for their biological function. In the dehydrated state, the function of biomolecules, such as proteins, is severely impeded, so hydration is required for bioactivity. The dynamics of the hydrated biomolecules and their hydration water are related - but how closely? The problem involves several layers of complexity. Even for water in the bulk state, the contribution from various dynamic components to the overall dynamics is not fully understood. In biological systems, the effects of confinement on the hydration water further complicate the picture. Even if the various components of the hydration water dynamics are properly understood, which of them are coupled to the protein dynamics, and how? The studies of protein dynamics over the wide temperature range, from physiological to low temperatures, provide some answers to these question. At low temperatures, both the protein and its hydration water behave as solids, with only vibrational degrees of freedom. As the temperature is increased, non-vibrational dynamic components start contributing to the measurable dynamics and eventually become dominant at physiological temperatures. Thus, the temperature dependence of the dynamics of protein and its hydration water may allow probing various dynamic components separately. In order to suppress the water freezing, the low-temperature studies of protein rely on either low-hydrated samples (essentially, hydrated protein powders), or cryo-protective solutions. Both approaches introduce the hydration environments not characteristic of the protein environments in living systems, which are typically aqueous protein solutions of various concentrations. In this paper, we discuss the coupling between the dynamic components of the protein and its hydration water by critical examining of the existing literature, and then propose that proteins can be studied in an aqueous solution that is remarkably similar in its dynamic properties to pure water, yet does not freeze down to about 200 K, even in the bulk form. The first experiment of this kind using quasielastic neutron scattering is discussed, and more experiments are proposed.  相似文献   

13.
14.
A series of response tensors relating the electric field at a nucleus in a molecule to external fields and field gradients is defined. Each new tensor is a derivative of a molecular multipole moment or polarizability with respect to motion of that nucleus. Connections with infrared and Raman intensities and with changes in molecular geometry induced by external fields are discussed. Sum rules and symmetry conditions on the response tensors are given. Numerical examples are presented for some small molecules.  相似文献   

15.
Oxygen from air-saturated aqueous solutions was employed as redox mediator in SECM experiments. Accurate approach curves under negative-feedback conditions were obtained using platinum and gold microelectrodes. Imaging experiments were also carried out, using a 2.5 microns gold microelectrode and oxygen that acted as distance mediator. The topographic images of a glass surface and that of a marble surface prior and after localised acid attack were recorded. High concentrations of hydrogen ions were produced locally, at the microelectrode tip held 3 microns above the marble surface, by applying a large enough positive potential within the oxygen evolution region. Under these conditions, the dissolution of CaCO3 occurred. Pits were produced, and the crater volumes thus obtained were linearly dependent on the electrolysis time.  相似文献   

16.
We report the development of a nondestructive method to estimate the electric field (EF) distribution on a nano-sized sample surface in atom probe (AP) analysis. The simulated EF distribution on an ideal hemisphere indicates that the largest EF exists on the geometrical top of the ideal hemisphere and that EF decreases as the emitting area getting away from the sample apex. To estimate the EF distribution on a real sample surface, the sample apex is determined via comparing the field ion microscopy (FIM) signal intensity of {113} planes on the symmetrical sample surface. A series of contour maps showing the intensity of the evaporated ions (eg, H+) was obtained by applying various EFs on the sample surface. A plot of relative EFs with respect to the emitting angle can thus be extracted.  相似文献   

17.
Four-channel flow-through electrochemical cell working in thin-layer regime was designed, fabricated and characterized experimentally and in computational fluid dynamics (CFD) simulations. The new principle of operation allows reproducible splitting of a stream of liquid into multiple flow channels. Systems comprising of 2-, 3-, 4- and 8-channels were tested. The proper function of the cell is given by the ratio of the cross-sections of the fluidic element collecting chamber and the particular flow paths among which the liquid is distributed. Suitable flow rates providing uniform liquid distribution were evaluated and the results were compared to CFD modeling. The flow-through cells designed according to the proposed principle can be simply incorporated in automated routine analysis as only one inlet and one common outlet are required.  相似文献   

18.
The change in the electric field at a nucleus in a molecule due to bond stretch is related to the force constant of the stretched bond. The validity of this relationship using approximate wave functions at the SCF and MP2 levels of theory is tested for the diatomic molecules H2, HF, CO, and N2. The effect of basis set variation on H2 is also investigated. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1664–1667, 1997  相似文献   

19.
胡渝  胡志彬  汪正浩 《化学学报》1988,46(3):217-221
本文采用循环伏安法、恒电位电解法结合紫外光谱以及电子自旋共振波谱(ESR)方法对5-硝基尿嘧啶(5NU, 1)在DMSO中Ag-Hg电极上的电化学还原过程进行了研究, 并测定了反应中间物自由基的性质及其动力学规律. 实验结果表明, 1在DMSO中可有二个还原过程. 第一过程为1四电子还原为5-羟胺基尿嘧啶, 反应中所需质子由1提供. 第二个过程为失去质子后形成的阴离子5NU^-(2)在较负的电位下单电子还原为二价阴离子自由基, 后者可用ESR进行现场检测和研究, 其ESR参数分别为: 偶合常数αN=14.6G, αH=5.2G, 自由基g因子, g=2.005. 自由基的衰变反应为夺取1的质子, 反应的速度常数k1=52mol^-^1.dm^3.s^-^1.  相似文献   

20.
The combination of pressurized flow and electric field offers, with the use of capillary columns, several options for retention control. However, it has been shown that the utility of this technique is strongly limited by the high electric current that is generated at the high electric field strengths that are needed. We have earlier shown that the high current is a result of locally increased mobile phase ion concentration in the electric field, particularly around the inlet electrode. In this paper, we report that by splitting the mobile phase flow around the inlet electrode a relatively constant ion concentration around the electrode can be obtained and the high currents are there by reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号