首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple kinetic spectrophotometric method was developed for the determination of josamycin in its dosage forms and spiked human plasma. The method is based on reaction of the drug with 3-methylbenzothiazolin-2-one hydrazone/ferric chloride system for a fixed time of 20 min at 70 degrees C and measuring the produced color at 665 nm. The absorbance-concentration plot is rectilinear over the range of 5.0-30.0 microg/mL with detection limit of 1.0 microg/mL (1.2 x 10(-6) M). The determination of josamycin by the fixed concentration and the rate-constant methods is also feasible with the calibration equations obtained, but the fixed-time method proved to be more applicable. The procedure was successfully applied to commercial tablets. The results obtained were favorably compared with those given by reference methods. The method was further extended to the in vitro determination of josamycin in spiked human plasma. The recovery (n = 8) was 100.76 +/- 3.43%. The stoichiometry of the reaction between the drug and the reagent was studied by adopting the limiting logarithmic method, and a proposal of the reaction pathway was presented.  相似文献   

2.
A rapid, simple, and highly sensitive second derivative synchronous fluorometric method has been developed for the simultaneous determination of metoclopramide (MT) and pyridoxine (PY) in a binary mixture. The method is based on measurement of the native fluorescence of these drugs at delta lambda = 80 nm in methanol. The different experimental parameters affecting the native fluorescence of the drugs were carefully studied and optimized. The fluorescence-concentration plots were rectilinear over the ranges of 0.02-0.4 and 0.1-2 microg/mL for MT and PY, respectively. The limits of detection were 0.003 and 0.007 microg/mL and the limits of quantification were 0.008 and 0.02 microg/mL for MT and PY, respectively. The proposed method was successfully applied to the determination of MT and PY in synthetic mixtures and in commercial syrup. The results were in good agreement with those obtained with a reported method. The high sensitivity attained by the proposed method allowed the determination of MT in spiked and real human plasma samples. The mean percent recoveries of MT from spiked and real human plasma (n = 3) were 93.72 +/- 3.15 and 89.72 +/- 2.19 respectively.  相似文献   

3.
A highly sensitive spectrofluorometric method was developed for the determination of verapamil hydrochloride (VP HCl) in pharmaceutical formulations and biological fluids. The proposed method is based on investigation of the fluorescence spectral behavior of VP HCl in micellar systems, such as sodium dodecyl sulfate (SDS) and beta-cyclodextrin (beta-CD). In aqueous solutions of borate buffer of pH 9 and 8.5, VP HCI was well incorporated into SDS and beta-CD, respectively, with enhancement of its native fluorescence. The fluorescence was measured at 318 nm after excitation at 231 nm. The fluorescence intensity enhancements were 183 and 107% in SDS and in beta-CD, respectively. The fluorescence-concentration plots were rectilinear over the range of 0.02-0.2 and 0.02-0.25 microg/mL, with lower detection limits of 5.58 x 10(-3) and 3.62 x 10(-3) microg/mL in SDS and beta-CD, respectively. The method was successfully applied to the analysis of commercial tablets and the results were in good agreement with those obtained with the official method. The method was further applied to the determination of VP HCl in real and spiked human plasma. The mean % recoveries in the case of spiked human plasma (n=4) was 92.59 +/- 3.11 and 88.35 +/- 2.55 using SDS and beta-CD, respectively, while that in real human plasma (n=3) was 90.17 +/- 6.93 and 89.17 +/- 6.50 using SDS and beta-CD, respectively. The application of the method was extended to the stability studies of VP HCl after exposure to ultraviolet radiation and upon oxidation with hydrogen peroxide.  相似文献   

4.
Four different stability-indicating procedures are described for determination of tiapride in pure form, dosage form, and human plasma. Second derivative (D2), first derivative of ratio spectra (1DD), spectrofluorimetric, and high-performance column liquid chromatographic (LC) methods are proposed for determination of tiapride in presence of its acid-induced degradation products, namely 2-methoxy-5-(methylsulfonyl) benzoic acid and 2-diethylaminoethylamine. These approaches were successfully applied to quantify tiapride using the information included in the absorption, excitation, and emission spectra of the appropriate solutions. In the D2 method, Beer's law was obeyed in the concentration range of 1.5-9 microg/mL with a mean recovery of 99.94 +/- 1.38% at 253.4 nm using absolute ethanol as a solvent. In 1DD, which is based on the simultaneous use of the first derivative of ratio spectra and measurement at 245 nm in absolute ethanolic solution, Beer's law was obeyed over a concentration range of 1.5-9 microg/mL with mean recovery 99.64 +/- 1.08%. The spectrofluorimetric method is based on the determination of tiapride native fluorescence at 339 nm emission wavelength and 230 nm excitation wavelength using water-methanol (8 + 2, v/v). The calibration curve was linear over the range of 0.2-3 microg/mL with mean recovery of 99.66 +/- 1.46%. This method was also applied for determination of tiapride in human plasma. A reversed-phase LC method performed at ambient temperature was validated for determination of tiapride using methanol-deionized water-triethylamine (107 + 93 + 0.16, v/v/v) as the mobile phase. Sulpiride was used as an internal standard at a flow rate of 1 mL/min with ultraviolet detection at 214 nm. A linear relation was obtained over a concentration range of 2-30 microg/mL with mean recovery of 99.66 +/- 0.9%. Results were statistically analyzed and compared with those obtained by applying the reference method. They proved both accuracy and precision.  相似文献   

5.
A sensitive spectrofluorimetric procedure for the determination of paroxetine-HCl in pharmaceutical formulations and human plasma has been described. The native fluorescence of the drug has been studied under different conditions. Maximum fluorescence intensity was obtained in methanol at 340 nm using 290 nm for excitation. Different surfactants showed negative effect on the fluorescence intensity of paroxetine-HCl. Regression analysis of Beer's plot showed good correlation (r=0.9999) between fluorescence intensity and concentration over the range of 0.05-0.40 microg ml-1 with lower limit of detection (LOD) of 0.015 microg ml-1. The drug was successfully determined in its tablets with average % recovery of 98.00+/-0.99% which was in accordance with those given by a compendial method. The method was also applied to the determination of paroxetine-HCl in spiked human plasma with average recovery of 77.70+/-1.06%.  相似文献   

6.
A highly sensitive and specific method is proposed for the determination of vigabatrin (I) and gabapentin (II) in their dosage forms and spiked human plasma. The method is based on coupling the drugs with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole in borate buffer at pH 7.1 and measuring the resulting fluorescence at 532 nm after excitation at 465 nm. The fluorescence intensity was a linear function of the concentration of the drugs over the ranges of 1.3-6.5 and 1.7-8.5 microg/mL for I and II, respectively. Minimum detectability values were 0.54 microg/mL (4.2 x 10(-6)M) and 0.97 microg/mL (5.7 x 10(-6)M) for I and II, respectively, under the described conditions. The proposed method was successfully applied to the determination of the 2 drugs in their dosage forms, and the percent recoveries +/- standard deviation (SD) were 104.53 +/- 1.2 and 100.00 +/- 1.32 of the label claim for I and II, respectively. The method was further applied to the determination of vigabatrin in spiked plasma samples. The percent recovery +/- SD was 101.58 +/- 2.68. Interference from endogenous alpha-amino acids was overcome through selective complexation with freshly prepared Cu(OH)2. The interference likely to be encountered from co-administered drugs, such as carbamazepine, cimetidine, clonazepam, clopazam, phenobarbital, valproic acid, and lamotrigine, was also studied. A reaction pathway is suggested.  相似文献   

7.
A simple RP-HPLC method was established for the determination of salidroside in dog plasma. Salidroside is one of the most active ingredients of Rhodiola L. The method had within-run precision values in the range of +/- 2.3 to +/- 9.1% (n = 5) and between-run precision in the range of +/- 3.2 to +/- 9.8%. A simple protein precipitation for salidroside extraction was processed using ACN at precipitant-to-plasma volume ratio (P-P ratio) of 3:2. The extraction recoveries of salidroside at seven concentrations were higher than 63.2%. There was a linear relationship between chromatographic area and concentration over the range of 0.83-520 microg/mL for salidroside in plasma (R = 0.9926). The LOQ (S/N = 10) of the method was 0.83 microg/mL. The method was applied in a study of the pharmacokinetics of salidroside injection in six beagle dogs. The major pharmacokinetic parameters of C(max), AUC(0-24), AUC(0-infinity), and t(1/2) of salidroside in beagle dogs after i.v. administration of a single 75 mg/kg (5 mL/kg) dose were 96.16 +/- 8.59 microg/mL, 180.3 +/- 30.6 microg h/mL, 189.3 +/- 32.1 microg h/mL, and 2.006 +/- 0.615 h, respectively.  相似文献   

8.
A rapid, simple, and highly sensitive second-derivative synchronous fluorometric method has been developed for the simultaneous analysis of binary mixtures of cinnarizine (CN) and nicergoline (NIC). The method is based upon measurement of the native fluorescence of these drugs at constant wavelength difference (Deltalambda) = 80 nm in aqueous methanol (50%, v/v). The different experimental parameters affecting the native fluorescence of the studied drugs were carefully studied and optimized. The fluorescence-concentration plots were rectilinear over the range of 0.025-1.5 and 0.25-5.5 microg/mL for CN and NIC, respectively, with lower detection limits of 0.58 and 0.82 ng/mL and quantitation limits of 1.93 and 2.73 ng/mL for CN and NIC, respectively. The proposed method was successfully applied for the determination of the studied compounds in synthetic mixtures and in commercial tablets. The results obtained were in good agreement with those obtained with reference methods. The high sensitivity attained by the proposed method allowed the determination of CN in real and spiked human plasma. The mean recovery in the case of spiked human plasma [number of trials (n) = 3] was 102.82 +/- 2.17%, while that in real human plasma (n = 3) was 105.25 +/- 2.05.  相似文献   

9.
A novel method for the non-derivatization liquid chromatographic determination of streptomycin (STR) and dihydrostreptomycin (DHSTR) was developed and validated based on evaporative light scattering detection (ELSD). Utilizing a ThermoHypersil BetaBasic C18 analytical column, evaporation temperature of 50 degrees C and pressure of nebulizing gas (nitrogen) of 3.5 bar, the optimized mobile phase was 1.25 mL L(-1) TFA aqueous solution, in an isocratic mode at a rate of 1.0 mL min(-1). STR was eluted at 5.6 min and DHSTR at 7.8 min with a resolution of 4.4. Linear calibration curves were obtained from 2 to 120 microg mL(-1) (r > 0.9990) for STR and 2-75 microg mL(-1) (r > 0.9994) for DHSTR, with a LOD equal to 0.7 and 0.5 microg mL(-1), respectively. The developed method was applied for the assay of STR and DHSTR (sulfate) in pharmaceutical raw materials and formulations, while the simultaneous direct determination of sulfate was feasible (tR = 2.5 min, LOD = 1.4 microg mL(-1), double logarithmic calibration curve in the range of 4-50 microg mL(-1), r > 0.9998). Modified isocratic mobile phase (H2O-ACN, 90:10, v/v, containing 1.25 mL L(-1) TFA), was used for the determination of streptomycin B impurity in STR sulfate raw material and a gradient mobile phase (H2O-ACN containing TFA) was used for the determination of DHSTR in the presence of penicillinG procaine. The developed method was also applied for the assay of commercial formulations (STR powder and DHSTR injection solution and suspension) (%recovery 98-102, %RSD < 1.3, n = 3 x 3), for the determination of STR in bacteria culture medium (%recovery 99.6, %RSD = 0.8, n = 3 x 3), and for the determination of DHSTR in human plasma (2.0-23.0 microg mL(-1)) after solid phase extraction using carboxylate cartridges (%recovery 98.4-101.8, %RSD = 3.2, n = 3 x 3).  相似文献   

10.
Four sensitive, simple and specific methods were developed for the determination of desloratadine (DSL), a new antihistaminic drug in pharmaceutical preparations and biological fluids. Methods I and II are based on coupling DSL with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) in borate buffer of pH 7.6 where a yellow colored reaction product was obtained and measured spectrophotometrically at 485 nm (Method I). The same product could be measured spectrofluorometrically at 538 nm after excitation at 480 nm (Method II). Methods III and IV, on the other hand, involved derivatization of DSL with 2,4-dinitrofluorobenzene (DNFB) in borate buffer of pH 9.0 producing a yellow colored product that absorbs maximally at 375 nm (Method III). The same derivative was determined after separation adopting HPLC (Method IV). The separation was performed on a column packed with cyanopropyl bonded stationary phase equilibrated with a mobile phase composed of acetonitrile-water (60 : 40, v/v) at a flow rate of 1.0 ml min(-1) with UV detection at 375 nm. The calibration curves were linear over the concentration ranges of 0.5-6, 0.02-0.4, 1-10 and 1-30 microg ml(-1) for Methods I, II, III and IV, respectively. The lower detection limits (LOD) were 0.112, 0.004, 0.172 and 0.290 microg ml(-1), respectively, for the four methods. The limits of quantification (LOQ) were 0.340, 0.012, 0.522 and 0.890 microg ml(-1) for Methods I, II, III and IV, respectively. The proposed methods were applied to the determination of desloratadine in its tablets and the results were in agreement with those obtained using a reference method. Furthermore, the spectrofluorometric method (Method II) was extended to the in-vitro determination of the drug in spiked human plasma, with a mean percentage recovery (n=4) of 99.7+/-3.54. Interference arising from endogenous amino acids has been overcome using solid phase extraction. The proposed methods are highly specific for determination of DSL in the presence of the parent drug loratadine. A proposal for the reaction pathways is postulated.  相似文献   

11.
A simple and sensitive high-performance liquid chromatography (HPLC) method has been developed for the determination of chlorogenic acid (3-O-caffeoyl-D-quinic acid) in plasma and applied to its pharmacokinetic study in rabbits after administration of Flos Lonicerae extract. Plasma samples are extracted with methanol. HPLC analysis of the extracts is performed on a C(18) reversed-phase column using acetonitrile-0.2% phosphate buffer (11:89, v/v) as the mobile phase. The UV detector is set at 327 nm. The standard curves are linear in the range 0.0500-1.00 microg/mL (r = 0.9987). The mean extraction recovery of 85.1% is obtained for chlorogenic acid. The interday precision (relative standard deviation) ranges from 5.0% to 7.5%, and the intraday precision is better than 9.0%. The limit of quantitation is 0.0500 microg/mL. The plasma concentration of chlorogenic acid shows a C(max) of 0.839 +/- 0.35 microg/mL at 34.7 +/- 1.1 min and a second one of 0.367 +/- 0.16 microg/mL at 273.4 +/- 39.6 min.  相似文献   

12.
A simple and sensitive high-performance liquid chromatographic (HPLC) method is developed for the determination of osthole in rat plasma and applied to a pharmacokinetic study in rats after administration of Fructus Cnidii extract. After addition of fluocinonide as an internal standard, plasma samples are extracted with diethyl ether. HPLC analysis of the extracts is performed on a Hypersil ODS2 analytical column, using methanol-0.4% acetic acid (65:35, v/v) as the mobile phase. The UV detector is set at 322 nm. The standard curve is linear over the range 0.0520-5.20 microg/mL (r = 0.9979). The mean extraction recoveries of osthole at three concentrations were 81.0%, 91.2%, and 90.7%, respectively. The intra- and interday precisions have relative standard deviations from 1.9% to 4.9%. The limit of quantitation is 0.0520 microg/mL. The HPLC method developed can easily be applied to the determination and pharmacokinetic study of osthole in rat plasma after the animals are given the Fructus Cnidii extract. The plasma concentration of osthole from six rats showed a Cmax of 0.776 +/- 0.069 microg/mL at Tmax of 1.0 +/- 0.3 h.  相似文献   

13.
Four new methods were developed and validated for the determination of cinnarizine HCl in its binary mixture with piracetam in pure and pharmaceutical preparations. The first one was a densitometric analysis that provides a simple and rapid method for the separation and quantification of cinnarizine HCI. The method depends on the quantitative densitometric evaluation of thin-layer chromatograms of cinnarizine HCI at 252 nm over concentration range of 1-6 microg/spot, with a mean accuracy of 100.05 +/- 0.91%. The second method was determination of the drug using a colorimetric method that utilizes the reaction of 3-methyl-benzothiazolin-2-one in the presence of FeCl3 as an oxidant. The green color of the resulting product was measured at 630 nm over concentration range 10-40 microg/mL, with a mean accuracy of 100.10 +/- 1.13%. The third method was a direct spectrophotometric determination of cinnarizine HCI at 252 nm over the concentration range 7-20 microg/mL, while piracetam was determined by derivative ratio spectrophotometry at 221.6 nm over concentration range 5-30 microg/mL, with a mean accuracy of 100.14 +/- 0.79 and 100.26 +/- 1.24% for cinnarizine HCI and piracetam, respectively. The last method was a liquid chromatography analysis of both cinnarizine HCI and piracetam, depending on quantitative evaluation of chromatograms of cinnarizine HCI and piracetam at 252 and 212 nm, respectively, over the concentration range 10-200 microg/mL for cinnarizine HCI and 20-500 microg/mL for piracetam, with a mean accuracy of 100.03 +/- 0.89 and 100.40 +/- 0.94% for cinnarizine HCI and piracetam, respectively. The proposed procedures were checked using laboratory-prepared mixtures and successfully applied for the analysis of their pharmaceutical preparations. The validity of the proposed procedures was further assessed by applying the standard addition technique. Recoveries were quantitative, and the results obtained agreed with those obtained by other reported methods.  相似文献   

14.
Two simple, sensitive, and specific spectrofluorometric procedures have been developed for the determination of labetalol (LBT) in pharmaceuticals and biological fluids. LBT was found to react with Al3+, both in acetate buffer of pH 4.5 (Procedure I) and borate buffer of pH 8.0 (Procedure II), to produce highly fluorescent stable complexes. The fluorescence intensity could be enhanced by the addition of sodium dodecyl sulfate, resulting in 3.5- and 2.7-fold increases in the fluorescence intensity for Procedures I and II, respectively. In both procedures, the fluorescence intensity was measured at 408 nm after excitation at 320 nm. The different experimental parameters affecting the development and stability of the fluorescent products were carefully studied and optimized. The fluorescence intensity-concentration plots were rectilinear over the range of 0.02-0.1 and 0.01-0.05 microg/mL with a detection limit of 0.003 and 0.001 microg/mL for Procedures I and II, respectively. The proposed method was successfully applied to commercial tablets containing LBT. The results were in good agreement with those obtained using a reference spectrofluorometric method. Furthermore, the method was applied for the determination of LBT in spiked human plasma, and the recovery (n = 4) was 93.30 +/- 2.62%. A proposal of the reaction pathway was postulated for Procedures I and II, respectively.  相似文献   

15.
A simple, sensitive, and selective method for determination of acetaminophen based on its oxidation using N-bromosuccinimide (NBS) to produce a highly fluorescent product. Optimization of reaction variables was carried out concerning NBS concentration, pH, temperature, reaction time, and stability time. Under optimal analytical conditions, the fluorescent intensity was measured at lambda emission. 442 nm (excitation at lambda 330 nm). The linearity range is 120-800 ng/mL with lower detection limit of 33.6 ng/mL acetaminophen. The method was applied successfully to the determination of the compound in pharmaceutical preparations, with average recovery of 100.3 +/- 2%. The method was also applied successfully to the determination of the drug in spiked plasma samples, with an average recovery of 101.2 +/- 1%. Interference effects of some compounds, present in combination with acetaminophen, were studied and the tolerance limits of these compounds were determined.  相似文献   

16.
Yeh HH  Yang YH  Chen SH 《Electrophoresis》2006,27(4):819-826
A simple MEKC with UV detection at 254 nm for analysis of acyclovir in plasma and in cerebrospinal fluid (CSF) by direct injection without any sample pretreatment is described. The separation of acyclovir from biological matrix was performed at 25 degrees C using a BGE consisting of Tris buffer with SDS as the electrolyte solution. Several parameters affecting the separation of the drug from biological matrix were studied, including the pH and concentrations of the Tris buffer and SDS. Using dyphylline as an internal standard, the linear ranges of the method for the determination of acyclovir in plasma and in CSF all exceeded the range of 2-50 microg/mL; the detection limit of the drug in plasma and in CSF (S/N = 3; injection 3.45 kPa, 5 s) was 1.0 microg/mL. The applicability of the proposed method for determination of acyclovir in plasma and CSF collected at 8 h after intravenous administration of 500 mg acyclovir (Zovirax) in two patients with herpes simplex encephalitis was demonstrated.  相似文献   

17.
Zhang T  Cui Y 《色谱》2011,29(8):768-772
建立了基于微乳液相色谱(MELC)的人血浆中丙泊酚浓度的测定方法。采用Hypersil BDS C18色谱柱分离,并考察了微乳流动相中各组分对溶质洗脱的影响。优化的色谱条件: 以0.5%醋酸(含有3.0%十二烷基硫酸钠(SDS),0.8%正庚烷,6.0%正丁醇)微乳为流动相,流速为1.0 mL/min,荧光检测器激发波长(λex)为274 nm、发射波长(λem)为312 nm,柱温为室温。人血浆样品用流动相稀释并离心后,直接进样分析。丙泊酚在0.25~10 μg/mL质量浓度范围内呈良好的线性关系,方法的回收率为(98.2±1.9)%~(104.6±2.2)%;日内测定峰面积的相对标准偏差(RSD)为1.42%~2.43%,日间测定峰面积的RSD为2.75%~4.79%。该方法简便可行、重复性好,可用于人血浆中丙泊酚浓度的测定。  相似文献   

18.
A simple and highly sensitive voltammetric method was developed for the determination of benazepril (I) and ramipril (II). The compounds were treated with nitrous acid, and the cathodic current produced by the resulting nitroso derivatives was measured. The voltammetric behavior was studied by adopting direct current (DCt), differential pulse (DPP), and alternating current (ACt) polarography. Both compounds produced well-defined, diffusion-controlled cathodic waves over the whole pH range in Britton-Robinson buffers (BRb). At pH 3 and 5, the values of diffusion-current constants (Id), were 5.90 +/- 0.40 and 6.66 +/- 0.61 for I and II, respectively. The current concentration plots for I were rectilinear over the range of 1.5-40 and 0.1-30 microg/mL in the DCt and DPP modes, respectively; for II, the range was 2-30 and 0.1-20 microg/mL in the DCt and DPP modes, respectively. The minimum detectabilities (S/N = 2) were 0.015 microg/mL (about 3.25 x 10(-8)M) and 0.012 microg/mL (about 2.88 x 10(-8)M) for I and II, respectively, adopting the DPP mode. Results obtained for the proposed method when applied to the determination of both compounds in dosage forms were in good agreement with those obtained using reference methods. Hydrochlorthiazide, which is frequently co-formulated with these drugs, did not interfere with the assay. The method was also applied to the determination of benazepril in spiked human urine and plasma. The percentage recoveries adopting the DPP mode were 96.2 +/- 1.21 and 95.7 +/- 1.61, respectively.  相似文献   

19.
A validated reversed-phase high-performance liquid chromatographic (RP-HPLC) method was developed for the determination of bergenin in rat plasma. Bergenin in rat plasma was extracted with methanol, which also acted as a deproteinization agent. Chromatographic separation of bergenin was performed on a C(18) column, with a mobile phase of methanol-water (22:78, v/v) at a flow-rate of 0.8 mL/min and an operating temperature of 40 degrees C, and UV detection was set at 220 nm. The calibration curve was linear over the range 0.25-50 microg/mL (r = 0.9990) in rat plasma. The limit of quantification was 0.25 microg/mL using a plasma sample of 100 microL. The extraction recoveries were 83.40 +/- 6.02, 81.49 +/- 2.40 and 72.51 +/- 2.64% at concentrations of 0.5, 5 and 50 microg/mL, respectively. The intra-day and inter-day precision and accuracy were validated by relative standard deviation (RSD%) and relative error (RE%), which were in the ranges 3.74-9.91 and -1.6-8.0%. After intravenous administration to rats at the dose of 11.25 mg/kg, the plasma concentration-time curve of bergenin was best conformed to a two-compartment open model. The main pharmacokinetic parameters indicated that bergenin exhibited a wide distribution and moderate elimination velocity in rat.  相似文献   

20.
A simple and sensitive reversed-phase liquid chromatography method was developed and validated for the determination of nicardipine hydrochloride (NC) in rabbit plasma. Nicardipine hydrochloride and nimodipine, used as internal standard, were initially extracted from plasma by a rapid solid-phase extraction using C(18) cartridges. After extraction, nicardipine hydrochloride was separated by HPLC on a C(18) column and quantified by ultraviolet detection at 254 nm. A mixture of acetonitrile-0.02 M sodium phosphate buffer-methanol (45:40:15) with 0.2% of triethylamine of pH of 6.1 was used as mobile phase. The mean (+/-SD) extraction efficiency of NC was 77.56 +/- 5.4, 84.23 +/- 4.32 and 83.94 +/- 3.87% for drug concentrations of 5, 25 and 100 ng/mL, respectively. The method proved to be linear in the range of 5-100 ng/mL with a regression coefficient of 0.9993. The relative standard deviations of intra- and inter-day analysis for NC in plasma were 3.26-6.52% (n = 5) and 4.71-9.38% (n = 5), respectively. The differences of the mean value measured from the concentration prepared, expressed in percentages (bias percentage), were only - 5.2, 0.4 and 0.8% at NC 5, 25 and 50 ng/mL, which confirmed the accuracy of the method. The analytical technique was used to determine NC plasma concentration after drug oral administration to rabbits. The results inferred that NC is rapidly absorbed in rabbits and has a short half-life (t(1/2) = 1.34 h).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号