首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杨青  马蕙  籍仙荣 《声学学报》2014,39(5):624-632
对实地双通道测量获得的道路交通噪声和铁路噪声信号样本进行了自相关函数和双耳自相关函数(Interaural CrossCorrelation Function)的分析。进而通过对噪声样本时间因子和空间因子的相关性分析、主成分分析和主观评价实验,得到了3个铁路噪声源特征参量物理因子和4个道路交通噪声源特征参量物理因子。发现与传统的声压级测量相比,表征声音信号时间特性和空间特性的这7个物理量可以更全面、准确地表征交通噪声的特性。在对道路噪声进行测量或分析时,掌握与声源视觉宽度和音调感相对应的物理因子以及双耳时延和初始能量,就可获悉与人的主观评价相一致的道路交通噪声特征信息;对铁路噪声而言,掌握与声源视觉宽度相对应的物理因子以及双耳时延和声音的重复性特征,就可以得到与入主观评价相一致的铁路噪声特征信息。综合道路噪声特征参量和铁路噪声特征参量可以发现,双耳时延和与声源视觉宽度相对应的物理因子是与人的主观反应最为一致的主成分指标,说明噪声中决定人的评价的最主要的因素是代表空间特征的信号因子。   相似文献   

2.
Lateralization of complex binaural stimuli: a weighted-image model   总被引:2,自引:0,他引:2  
This article describes a new model that predicts the subjective lateral position of bandpass stimuli. It is assumed, as in other models, that stimuli are bandpass filtered and rectified, and that the rectified outputs of filters with matching center frequencies undergo interaural cross correlation. The model specifies and utilizes the shape and location of assumed patterns of neural activity that describe the cross-correlation function. Individual modes of this function receive greater weighting if they are straighter (describing consistent interaural delay over frequency) and/or more central (describing interaural delays of smaller magnitude). This weighting of straightness and centrality is used by the model to predict the perceived laterality of several types of low-frequency bandpass stimuli with interaural time delays and/or phase shifts, including bandpass noise, amplitude-modulated stimuli with time-delayed envelopes, and bandpass-filtered clicks. This model is compared to other theories that describe lateralization in terms of the relative contributions of information in the envelopes and fine structures of binaural stimuli.  相似文献   

3.
Running interaural cross correlation is a basic assumption to model the performance of the binaural auditory system. Although this concept is particularly suited to simulate psychoacoustic localization phenomena, there exist some localization effects which cannot be explained by pure cross correlation. In this paper a model of interaural cross correlation is extended by a "contralateral-inhibition mechanism" and by "monaural detectors" in order to simulate a wide range of psychoacoustic lateralization data. The extended model explains lateralization of pure tones with interaural time differences as well as with interaural level differences. Multiple images are predicted for tones with characteristic combinations of interaural signal parameters and for noise signals with different degrees of interaural cross correlation. The model is also capable of simulating dynamic lateralization phenomena, such as the "law of the first wave front" which is dealt with in a companion paper [Lindemann, J. Acoust. Soc. Am. 80, 1623-1630 (1986)]. The present paper is restricted to a comparison of the model predictions for stationary signals with the results of dichotic listening experiments.  相似文献   

4.
5.
The theory of subjective preference of the sound field in a concert hall is established based on the model of human auditory-brain system. The model consists of the autocorrelation function (ACF) mechanism and the interaural crosscorrelation function (IACF) mechanism for signals arriving at two ear entrances, and the specialization of human cerebral hemispheres. This theory can be developed to describe primary sensations such as pitch or missing fundamental, loudness, timbre and, in addition, duration sensation which is introduced here as a fourth. These four primary sensations may be formulated by the temporal factors extracted from the ACF associated with the left hemisphere and, spatial sensations such as localization in the horizontal plane, apparent source width and subjective diffuseness are described by the spatial factors extracted from the IACF associated with the right hemisphere. Any important subjective responses of sound fields may be described by both temporal and spatial factors.  相似文献   

6.
Narrow-band sound localization related to external ear acoustics.   总被引:3,自引:0,他引:3  
Human subjects localized brief 1/6-oct bandpassed noise bursts that were centered at 6, 8, 10, and 12 kHz. All testing was done under binaural conditions. The horizontal component of subjects' responses was accurate, comparable to that for broadband localization, but the vertical and front/back components exhibited systematic errors. Specifically, responses tended to cluster within restricted ranges that were specific for each center frequency. The directional transfer functions of the subjects' external ears were measured for 360 horizontal and vertical locations. The spectra of the sounds that were present in the subjects' ear canals, the "proximal stimulus" spectra, were computed by combining the spectra of the narrow-band sound sources with the directional transfer functions for particular stimulus locations. Subjects consistently localized sounds to regions within which the associated directional transfer function correlated most closely with the proximal stimulus spectrum. A quantitative model was constructed that successfully predicted subjects' responses based on interaural level difference and spectral cues. A test of the model, using techniques adapted from signal detection theory, indicated that subjects tend to use interaural level difference and spectral shape cues independently, limited only by a slight spatial correlation of the two cues. A testing procedure is described that provides a quantitative comparison of various predictive models of sound localization.  相似文献   

7.
The spatial impression of sound in a hall can be quantified using sound field factors such as the interaural cross-correlation coefficient (IACC) calculated from binaural impulse response (BIR), henceforth denoted by IACCIR. The subjective diffuseness for the listener is a spatial attribute which depends on factors associated both with the source signal and with the actual sound field, and is quantified using the IACC of the signal received by the listener, henceforth denoted by IACCSR. Therefore, the subjective diffuseness in a given hall may change with the music. The aims of this study are to estimate the IACCSR from the IACCIR and the factors, which is obtained from autocorrelation function (ACF) of music signal, and to evaluate the subjective diffuseness by these factors. First, the relationship between the IACCIR and IACCSR was investigated. Second, subjective diffuseness was measured by a psycho-acoustical experiment. As a result, the IACCSR could be estimated from the IACCIR of the BIR and the effective duration (τe) from the ACF of music signal. It was found that the effects of BIRs on subjective diffuseness could be evaluated by IACCIR for almost all subjects, while the effects of music signals could be evaluated by the τe and the width of the peak at τ=0 (W?(0)) of the ACF.  相似文献   

8.
In the context of optimal acoustic design of concert halls, preference tests for simulated sound fields with various combinations of early discrete reflections and subsequent reverberation were conducted and the results compared with objective parameters. The results show that lateral early reflections which yield a small value of the interaural cross correlation give more preferred judgments than do non-lateral ones. The most preferred initial time delay (or scale factor for the dimensions of concert halls) can be determined by the long-time autocorrelation function of a music motif and by the total amplitude of both early reflections and the subsequent reverberation. As a comprehensive design concept, an “overall preference” for listeners is introduced here from the preference results.  相似文献   

9.
Sensitivity to differences in interaural correlation was measured for 1.3-ERB-wide bands of noise using a 2IFC task at six frequencies: 250, 500, 750, 1000, 1250, and 1500 Hz. The sensitivity index, d', was measured for discriminations between a number of fixed pairs of correlation values. Cumulative d' functions were derived for each frequency and condition. The d' for discriminating any two values of correlation may be recovered from the cumulative d' function by the difference between cumulative d's for these values. Two conditions were employed: the noisebands were either presented in isolation (narrow-band condition) or in the context of broad, contiguous flanking bands of correlated noise (fringed condition). The cumulative d' functions showed greater sensitivity to differences in correlation close to 1 than close to 0 at low frequencies, but this difference was less pronounced in the fringed condition. Also, a more linear relationship was observed when cumulative d' was plotted as a function of the equivalent signal-to-noise ratio (SNR) in dB for each correlation value, rather than directly against correlation. The equivalent SNR was the SNR at which the interaural correlation in an NoS(pi) stimulus would equal the interaural correlation of the noise used in the experiment. The maximum cumulative d' declined above 750 Hz. This decline was steeper for the fringed than for the narrow-band condition. For the narrow-band condition, the total cumulative d' was variable across listeners. All cumulative d' functions were closely fitted using a simple two-parameter function. The complete data sets, averaged across listeners, from the fringed and narrow-band conditions were fitted using functions to describe the changes in these parameters over frequency, in order to produce an interpolated family of curves that describe sensitivity at frequencies between those tested. These curves predict the spectra recovered by the binaural system when complex sounds, such as speech, are masked by noise.  相似文献   

10.
The binaural system is well-known for its sluggish response to changes in the interaural parameters to which it is sensitive. Theories of binaural unmasking have suggested that detection of signals in noise is mediated by detection of differences in interaural correlation. If these theories are correct, improvements in the intelligibility of speech in favorable binaural conditions is most likely mediated by spectro-temporal variations in interaural correlation of the stimulus which mirror the spectro-temporal amplitude modulations of the speech. However, binaural sluggishness should limit the temporal resolution of the representation of speech recovered by this means. The present study tested this prediction in two ways. First, listeners' masked discrimination thresholds for ascending vs descending pure-tone arpeggios were measured as a function of rate of frequency change in the NoSo and NoSpi binaural configurations. Three-tone arpeggios were presented repeatedly and continuously for 1.6 s, masked by a 1.6-s burst of noise. In a two-interval task, listeners determined the interval in which the arpeggios were ascending. The results showed a binaural advantage of 12-14 dB for NoSpi at 3.3 arpeggios per s (arp/s), which reduced to 3-5 dB at 10.4 arp/s. This outcome confirmed that the discrimination of spectro-temporal patterns in noise is susceptible to the effects of binaural sluggishness. Second, listeners' masked speech-reception thresholds were measured in speech-shaped noise using speech which was 1, 1.5, and 2 times the original articulation rate. The articulation rate was increased using a phase-vocoder technique which increased all the modulation frequencies in the speech without altering its pitch. Speech-reception thresholds were, on average, 5.2 dB lower for the NoSpi than for the NoSo configuration, at the original articulation rate. This binaural masking release was reduced to 2.8 dB when the articulation rate was doubled, but the most notable effect was a 6-8 dB increase in thresholds with articulation rate for both configurations. These results suggest that higher modulation frequencies in masked signals cannot be temporally resolved by the binaural system, but that the useful modulation frequencies in speech are sufficiently low (<5 Hz) that they are invulnerable to the effects of binaural sluggishness, even at elevated articulation rates.  相似文献   

11.
This study examines the relation between a static and a dynamic measure of interaural correlation discrimination: (1) the just noticeable difference (JND) in interaural correlation and (2) the minimum detectable duration of a fixed interaural correlation change embedded within a single noise-burst of a given reference correlation. For the first task, JNDs were obtained from reference interaural correlations of + 1, -1, and from 0 interaural correlation in either the positive or negative direction. For the dynamic task, duration thresholds were obtained for a brief target noise of +1, -1, and 0 interaural correlation embedded in reference marker noise of +1, -1, and 0 interaural correlation. Performance with a reference interaural correlation of +1 was significantly better than with a reference correlation of -1. Similarly, when the reference noise was interaurally uncorrelated, discrimination was significantly better for a target correlation change towards +1 than towards -1. Thus, for both static and dynamic tasks, interaural correlation discrimination in the positive range was significantly better than in the negative range. Using the two measures, the length of a binaural temporal window was estimated. Its equivalent rectangular duration (ERD) was approximately 86 ms and independent of the interaural correlation configuration.  相似文献   

12.
Performance in several binaural-interaction experiments   总被引:1,自引:0,他引:1  
The relationship between interaural correlation discrimination and binaural detection was investigated using common experimental procedures and common subjects. Psychometric functions were obtained for four normal-hearing subjects at 500 and 4000 Hz using third-octave noise signals for the correlation discrimination experiment, and pure-tone signals and third-octave noise maskers for the detection experiment. Results from these two measurements, which were compared by expressing the signal-to-noise ratio as an equivalent change in interaural correlation, support the idea that interaural correlation discrimination and binaural detection are closely related. Since large intersubject differences in binaural performance were observed in these experiments, interaural-time, interaural-intensity, and monaural-intensity discrimination were measured in a second experiment. The results of the second experiment show large intersubject differences for the interaural tasks, but not for the monaural task.  相似文献   

13.
Listeners' sensitivity to interaural correlation of the envelope of high-frequency waveforms and whether such sensitivity might account for detectability in a masking-level difference paradigm were assessed. Thresholds of interaural envelope decorrelation (from a reference correlation of 1.0) were measured for bands of noise centered at 4 kHz and bandwidths ranging from 50-1600 Hz. Decorrelation of the envelope was achieved by "mixing" two independent narrow-band noises. Separately, with the same listeners, NoSo and NoS pi detection thresholds were measured for maskers of the same center frequency and bandwidths. For bandwidths of noise up to about 400 Hz, listeners were similarly sensitive to interaural decorrelation in both types of task. However, for bandwidths greater than 400 Hz or so, while sensitivity in the discrimination task was unaffected, sensitivity was reduced in the NoS pi conditions. Additional data suggested that listeners were able to maintain their sensitivity independent of bandwidth in the discrimination task by focusing on binaural information within select spectral regions of the stimuli.  相似文献   

14.
Two experiments explored the concept of the binaural spectrogram [Culling and Colburn, J. Acoust. Soc. Am. 107, 517-527 (2000)] and its relationship to monaurally derived information. In each experiment, speech was added to noise at an adverse signal-to-noise ratio in the NoS pi binaural configuration. The resulting monaural and binaural cues were analyzed within an array of spectro-temporal bins and then these cues were resynthesized by modulating the intensity and/or interaural correlation of freshly generated noise. Experiment 1 measured the intelligibility of the resynthesized stimuli and compared them with the original NoSo and NoS pi stimuli at a fixed signal-to-noise ratio. While NoS pi stimuli were approximately equal to 50% intelligible, each cue in isolation produced similar (very low) intelligibility to the NoSo condition. The resynthesized combination produced approximately equal to 25% intelligibility. Modulation of interaural correlation below 1.2 kHz and of amplitude above 1.2 kHz was not as effective as their combination across all frequencies. Experiment 2 measured three-point psychometric functions in which the signal-to-noise ratio of the original NoS pi stimulus was increased in 3-dB steps from the level used in experiment 1. Modulation of interaural correlation alone proved to have a flat psychometric function. The functions for NoS pi and for combined monaural and binaural cues appeared similar in slope, but shifted horizontally. The results indicate that for sentence materials, neither fluctuations in interaural correlation nor in monaural intensity are sufficient to support speech recognition at signal-to-noise ratios where 50% intelligibility is achieved in the NoS pi configuration; listeners appear to synergistically combine monaural and binaural information in this task, to some extent within the same frequency region.  相似文献   

15.
Interaural correlation discrimination: II. Relation to binaural unmasking   总被引:1,自引:0,他引:1  
Many theoretical models of binaural interaction assume that sensitivity to interaural correlation underlies binaural unmasking. This paper explores the extent to which sensitivity to changes in interaural correlation implied by results from binaural detection experiments are consistent with sensitivity to changes in interaural correlation implied by results from binaural detection experiments are consistent with sensitivity to changes in interaural correlation measured directly in correlation discrimination experiments. The vehicle for this exploration is a simplified model of the underlying processes assumed by many models of binaural unmasking for the detection of narrow-band signals in the presence of broadband noise. Consideration is given to psychometric function slopes, detection thresholds, bandwidth effects, duration effects, level effects, and interaural-parameter effects. Although many of the results obtained from our analysis are consistent with the notion that the cue in binaural detection tasks is a change in interaural correlation, some significant inconsistencies are noted.  相似文献   

16.
Three experiments were carried out that employed low-frequency tone complexes with interaural delays that varied across the frequency domain. In the first experiment, threshold interaural delays were measured for three-tone complexes for which one, two, or all three components were delayed. The center frequency was 750 Hz and the frequency spacing (delta f) between components was 20, 50, 100, 250, or 450 Hz. For all delta f's, the presence of two diotic components elevated the threshold interaural delays obtained for the third component relative to that obtained for a pure tone of the same frequency. In the second experiment, observers made left-right judgments regarding the direction of movement of signals for which two components were delayed by 25 microseconds to the left ear during one interval and to the right ear during the other interval, while a third component of a variable time difference was delayed to the opposite side as the tone pair. Subjects reported single intracranial images during each interval, and the data showed that interaural delays of one component to one ear could be offset by interaural delays of the other two components to the other ear. In the final experiment, threshold interaural delays were measured for five-tone complexes in which one, two, three, four, or five components were delayed. The center frequency was 750 Hz and delta f was fixed at 100 Hz. Thresholds decreased in a linear fashion as the number of delayed components increased, falling by about a factor of 5 as the number of delayed components went from one to five. These results are consistent with spectrally synthetic binaural processing, with the lateral position of intracranial images determined by a combination of interaural information across the spectrum. These effects could be brought about by a linear combination of the outputs of frequency-specific cross-correlation networks or by a wideband cross correlation of the signals at the two ears.  相似文献   

17.
Binaural detection was examined for a signal presented in a narrow band of noise centered on the on-signal masking band (OSB) or in the presence of flanking noise bands that were random or comodulated with respect to the OSB. The noise had an interaural correlation of 1.0 (No), 0.99 or 0.95. In No noise, random flanking bands worsened Spi detection and comodulated bands improved Spi detection for some listeners but had no effect for other listeners. For the 0.99 or 0.95 interaural correlation conditions, random flanking bands were less detrimental to Spi detection and comodulated flanking bands improved Spi detection for all listeners. Analyses based on signal detection theory indicated that the improvement in Spi thresholds obtained with comodulated bands was not compatible with an optimal combination of monaural and binaural cues or to across-frequency analyses of dynamic interaural phase differences. Two accounts consistent with the improvement in Spi thresholds in comodulated noise were (1) envelope information carried by the flanking bands improves the weighting of binaural cues associated with the signal; (2) the auditory system is sensitive to across-frequency differences in ongoing interaural correlation.  相似文献   

18.
The purpose of this study was to test the hypothesis that stimuli characterized by "straight" trajectories of their patterns of cross correlation foster greater sensitivity to changes in interaural temporal disparities (ITDs) than do stimuli characterized by more "curved" trajectories of their patterns of cross correlation. To do so, sensitivity to changes in ITD was measured, as a function of duration, using a set of "reference" stimuli that yielded differing relative amounts of straightness within their patterns of cross correlation while keeping the dominant trajectory at or near midline. The relative amounts of straightness were manipulated by employing specific combinations of bandwidth, ITD, and interaural phase disparity (IPD) of Gaussian noises centered at 500 Hz. The results were consistent with expectations in that the patterning of the threshold ITDs revealed increasingly poorer sensitivity as greater and greater curvature was imposed on the dominant, "midline," trajectory. The variations in threshold ITD across the stimulus conditions can be accounted for quite well quantitatively by assuming either that the listeners based their judgments on changes in the position of the most central peak of the cross-correlation function or that they based their judgments on changes in the centroid of a second-level cross-correlation function. In a second experiment, binaural detection was measured using a subset of the reference stimuli as maskers. As expected, sensitivity was poorest with the maskers characterized by the greatest curvature, which were also those having the lowest interaural correlation.  相似文献   

19.
Temporal modulation transfer functions (TMTFs) were measured for detection of monaural sinusoidal amplitude modulation and dynamically varying interaural level differences for a single set of listeners. For the interaural TMTFs, thresholds are the modulation depths at which listeners can just discriminate interaural envelope-phase differences of 0 and 180 degrees. A 5-kHz pure tone and narrowband noises, 30- and 300-Hz wide centered at 5 kHz, were used as carriers. In the interaural conditions, the noise carriers were either diotic or interaurally uncorrelated. The interaural TMTFs with tonal and diotic noise carriers exhibited a low-pass characteristic but the cutoff frequencies changed nonmonotonically with increasing bandwidth. The interaural TMTFs for the tonal carrier began rolling off approximately a half-octave lower than the tonal monaural TMTF (approximately 80 Hz vs approximately 120 Hz). Monaural TMTFs obtained with noise carriers showed effects attributable to masking of the signal modulation by intrinsic fluctuations of the carrier. In the interaural task with dichotic noise carriers, similar masking due to the interaural carrier fluctuations was observed. Although the mechanisms responsible for differences between the monaural and interaural TMTFs are unknown, the lower binaural TMTF cutoff frequency suggests that binaural processing exhibits greater temporal limitation than monaural processing.  相似文献   

20.
The temporal resolution of the binaural auditory system was measured using a binaural analog of gap detection. A binaural "gap" was defined as a burst of interaurally uncorrelated noise (Nu) placed between two bursts of interaurally correlated noise (N0). The Nu burst creates a dip in the output of a binaural temporal window integrating interaural correlation, analogous to the dip created by a silent gap in the output of a monaural temporal window integrating intensity. The equivalent rectangular duration (ERD) of the binaural window was used as an index of binaural temporal resolution. In order to derive the ERD, both the shortest-detectable binaural gap and the jnd for a reduction in interaural correlation from unity were measured. In experiment 1, binaural-gap thresholds were measured using narrow-band noise carriers as a function of center frequency from 250 to 2000 Hz (fixed 100-Hz bandwidth) and a function of lower-cutoff frequency from 100 to 400 Hz (fixed 500-Hz upper-cutoff frequency). Binaural-gap thresholds (1) increased significantly with increasing frequency in both tasks, and (2) at frequencies below 500 Hz, were shorter than corresponding silent-gap thresholds measured with the same N0 noises. In experiment 2, interaural-correlation jnd's were measured for the same conditions. The jnd's also increased significantly with increasing frequency. The results were analyzed using a temporal window integrating the output of a computational model of binaural processing. The ERD of the window varied widely across listeners, with a mean value of 140 ms, and did not significantly depend on frequency. This duration is about an order of magnitude longer than the ERD of the monaural temporal window and is, therefore, consistent with "binaural sluggishness."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号