首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Dou YH  Bao N  Xu JJ  Meng F  Chen HY 《Electrophoresis》2004,25(17):3024-3031
Separation and detection of proteins have been realized on nonionic surfactant-modified poly(dimethylsiloxane) (PDMS) microfabricated devices with end-column amperometric detection. The hydrophobic PDMS channels are turned into hydrophilic ones after being modified with Brij35 and facilitate the separation of proteins. The coating can remarkably reduce the adsorption of large protein molecules and is stable in the range of pH 6-12. The detection of proteins in such channels needs less rinsing time and thus efficiency is raised. Even large molecules of proteins can also be detected with better reproducibility and enhanced plate numbers. The relative standard deviation (RSD) of the migration time for glucose oxidase (GOD) is 2.2% (n = 19). Separation of GOD and myoglobin has been developed in modified channels. Predominant operational variables, such as the coating conditions, the concentration of surfactant and buffer, are studied in detail.  相似文献   

2.
This report describes the use of PDMS ME coupled with amperometric detection for rapid separation of ascorbic, gallic , ferulic, p‐coumaric acids using reverse polarity. ME devices were fabricated in PDMS by soft lithography and detection was accomplished using an integrated carbon fiber working electrode aligned in the end‐channel configuration. Separation and detection parameters were investigated and the best conditions were obtained using a run buffer consisting of 5 mM phosphate buffer (pH 6.9) and a detection voltage of 1.0 V versus Ag/AgCl reference electrode. All compounds were separated within 70 s using gated injection mode with baseline resolution and separation efficiencies between 1200 and 9000 plates. Calibration curves exhibited good linearity and the LODs achieved ranged from 1.7 to 9.7 μM. The precision for migration time and peak height provided maximum values of 4% for the intrachip studies. Lastly, the analytical method was successfully applied for the analysis of ascorbic and gallic acids in commercial beverage samples. The results achieved using ME coupled with amperometric detection were in good agreement with the values provided by the supplier. Based on the data reported here, the proposed method shows suitability to be applied for the routine analysis of beverage samples.  相似文献   

3.
Lee HL  Chen SC 《Talanta》2004,64(1):210-216
Microchip capillary electrophoresis (μCE) with amperometric detection at Cu electrode benefited fast separation and direct detection of carbohydrates. The working electrode of 50-μm Cu wire attached nearly against the channel outlet—4 μm, where it benefited collecting detection current and suppressing overwhelming noise. The use of alkaline medium was essential to separating and detecting carbohydrates, which dissociated into the sensitive alcolate anions. The 10-cm serpentine chip, though lengthening the migration time, it provided better efficiency. Sucrose, cellobiose, glucose, and fructose migrated from the outlet in 400 s +2000 V. The linear calibration plots ranging from 10 to 1000 μM with regression coefficients better than 0.996 were obtained. The injection-to-injection reproducibility of 1.24% (n=7) for glucose in peak current and 0.6% for migration times were excellent. The detection limit was low, down to 2.3 μM for glucose (S/N=3) or 27.6 attomole in mass detection.  相似文献   

4.
The first reported use of a carbon paste electrochemical detector for microchip capillary electrophoresis (CE) is described. Poly(dimethylsiloxane) (PDMS)-based microchip CE devices were constructed by reversibly sealing a PDMS layer containing separation and injection channels to a separate PDMS layer that contained carbon paste working electrodes. End-channel amperometric detection with a single electrode was used to detect amino acids derivatized with naphthalene dicarboxaldehyde. Two electrodes were placed in series for dual electrode detection. This approach was demonstrated for the detection of copper(II) peptide complexes. A major advantage of carbon paste is that catalysts can be easily incorporated into the electrode. Carbon paste that was chemically modified with cobalt phthalocyanine was used for the detection of thiols following a CE separation. These devices illustrate the potential for an easily constructed microchip CE system with a carbon-based detector that exhibits adjustable selectivity.  相似文献   

5.
Capillary zone electrophoresis is employed for the determination of caffeine using end-column amperometric detection with a carbon fiber microdisk array electrode at a constant potential of 1.45 V versus a saturated calomel electrode. The optimum conditions of separation and detection are 0.1 52mM NaH2PO4-0.648mM Na2HPO4 for the buffer solution, 20 kV for the separation voltage, 5 kV for the injection voltage, and 10s for the injection time. The limit of detection is 2.9 x 10(-4)mM or 1.2 fmol (signal-to-noise ratio = 2). The relative standard deviation is 0.68% for the migration time and 2.3% for the electrophoretic peak current. The method is applied to determining caffeine in human serum and a cola drink.  相似文献   

6.
The coulometric efficiency (Ceff) of an amperometric detector integrated on PDMS/glass capillary electrophoresis microfluidic device (microchip) has been enhanced by in-channel electrochemical modification. In-channel electrochemical deposition of gold particles was performed in order to vertically increase the surface area of the Au sensing microelectrode. The roughness of the electrodes was characterized using scanning electron microscopy and profilometric analysis. The degree of electrode modification was also characterized by roughness factor determination. Separation processes including detection potential was optimized and the analytical performance of the microchip was tested using a mixture of dopamine (DA) and catechol (CA). The modified electrochemical detector provided well-resolved separation of DA and CA in less than 60 s with enhanced sensitivity; no peak broadening was observed. The limit of detection using in-channel modification of working electrode for DA and CA are 60 and 110 nM, respectively. Thus, in-channel electrochemical deposition of metallic particles should be used to enhance the Ceff of integrated amperometric detection of analytes with good redox properties in order to obtain lower LODs.  相似文献   

7.
Wang J  Chen G 《Talanta》2003,60(6):1239-1244
A method based on microchip capillary electrophoresis with amperometric detection was developed for the rapid separation and direct detection of oxidizable aromatic amino acids (without prior derivatization). The working electrode was a thick-film carbon strip electrode positioned opposite the outlet of the separation channel. Factors influencing the separation and detection processes were examined and optimized. The five aromatic amino acids, tyrosine, 5-hydroxytryptophan, tryptophan, p-aminobenzoic acid, and m-aminobenzoic acid, can be well separated within 5 min using a separation voltage of 2000 V and a 25 mM phosphate buffer (pH 7.0) run buffer containing 50 mM sodium dodecylsulfate. Most favorable amperometric detection was obtained at +0.95 V. Linear calibration plots are observed for micromolar concentrations of the oxidizable amino acids. The new protocol offers good stability and for reproducibility, with relative S.D. of less than 5% for both migration times and peak currents (n=8). It should be useful for the analysis of aromatic amino acids, as desired for life sciences.  相似文献   

8.
The fast separation capability of a novel miniaturized capillary electrophoresis with amperometric detection (CE-AD) system was demonstrated by determining sugar contents in Coke and diet Coke with an estimated separation efficiency of 60,000 TP/m. Factors influencing the separation and detection processes were examined and optimized. The end-capillary 300 microm Cu wire amperometric detector offers favorable signal-to-noise characteristics at a relatively low potential (+0.50 V vs. Ag/AgCl) for detecting sugars. Three sugars (sucrose, glucose, and fructose) have been separated within 330 s in a 8.5 cm length capillary at a separation voltage of 1000 V using a 50 mM NaOH running buffer (pH 12.7). Highly linear response is obtained for the above compounds over the range of 5.0 to 2.0 x 10(2) microg/mL with low detection limit, down to 0.8 microg/mL for glucose (S/N = 3). The injection-to-injection repeatability for analytes in peak current (RSD < 3.6%) and for migration times (RSD < 1.4%) was excellent. The new miniaturized CE-AD system should find a wide range of analytical applications involving assays of carbohydrates as an alternative to conventional CE and micro-CE.  相似文献   

9.
Jin W  Xu Q  Li W 《Electrophoresis》2000,21(7):1415-1420
Capillary zone electrophoresis was employed for the determination of clozapine using an end-column amperometric detection at a carbon fiber array microdisk electrode with simplified capillary/electrode alignment. The optimum conditions of separation and detection are: Britton-Robinson buffer, pH 2.0 (1.3 x 10(-2) mol/L total concentration of acids, 3.2 x 10(-3) mol/L NaOH), 15 kV for separation voltage, 5 kV and 10 s for injection voltage and injection time, respectively. The limit of detection is 4.2 x 10(-7) mol/L or 1.2 fmole (signal to noise, S/N = 2). The relative standard deviation is 1.4% for the migration time and 2.5% for the electrophoretic peak current. The method was applied to the determination of clozapine in human blood. The recovery of the method is between 94-104%.  相似文献   

10.
Wang AJ  Xu JJ  Zhang Q  Chen HY 《Talanta》2006,69(1):210-215
Poly(dimethylsiloxane) (PDMS) microfluidic channels modified by citrate-stabilized gold nanoparticles after coating a layer of linear polyethylenimine (LPEI) were successfully used to separate dopamine and epinephrine, which were difficult to be separated from baseline in native and hybrid PDMS microchannels. In-channel amperometric detection with a single carbon fibre cylindrical electrode was employed. Experimental parameters of separation and detection processes were optimized in detail. The analytes were well separated within 100 s in a 3.7 cm long separation channel at a separation voltage of +800 V using a 30 mM phosphate buffer solution (PBS, pH 7.0). Linear responses of them were obtained both from 25 to 600 μM with detection limits of 2 μM for dopamine and 5 μM for epinephrine, respectively. The modified PDMS channels have a long-term stability and an excellent reproducibility within 2 weeks.  相似文献   

11.
A microchip pressure-driven liquid chromatography (LC) with a packed column and an electrochemical flow cell has been developed by using polystyrene (PS) and poly(dimethylsiloxane) (PDMS). The cylindrical separation column with packed octadecyl silica particles was fabricated in the PS substrate. The three electrode system (working, reference, and counter electrode) for amperometric detection was fabricated onto the PS substrate, using the Au deposition, photolithography, and chemical etching. The detector flow cell was formed by sealing the electrode system with a PDMS chip containing a channel. In this flow cell, the effect of working electrode width (in the direction of flow) on chromatographic parameters, such as peak width and peak resolution were studied in electrode width ranging 50-5,000 microm. The effect of electrode width on sensitivity (current intensity, current density, and S/N ratio) was also examined. The sensitivity was discussed by simulating the concentration profile generated around the working electrode. The effects of the column packing size and the column size on the separation efficiency were examined. In this study, a good separation of three catechins was successfully achieved and the detection limits for (+)-catechin, epicatechin, and epigallocatechin gallate were 350, 450, and 160 nM, respectively.  相似文献   

12.
Jin W  Dong Q  Yu D  Ye X 《Electrophoresis》2000,21(8):1535-1539
Capillary zone electrophoresis was employed for the determination of myoglobin in human urine using end-column amperometric detection with a carbon fiber microelectrode at a constant potential of 1.80 V vs. saturated calomel electrode (SCF). The optimum conditions of separation and detection are: 3.73 x 10-4 mol/L sodium diethyl malonyl urea (barbitone sodium), 1.34 x 10-4 mol/L HCl for the buffer solution, 20 kV for separation voltage, 5 kV and 5 s for injection voltage and injection time, respectively. The limit of detection is 4.4 x 10-8 mol/L or 84 amole signal to noise (S/N = 2). The relative standard deviation is 2.9% for the migration time and 2.5% for the electrophoretic peak current. The method can be used for the determination of myoglobin in human urine. The samples can be directly injected and need no pretreatment. The method is also rapid, less than 2 min, and has a recovery rate of 94-106%.  相似文献   

13.
Jin W  Yu D  Dong Q  Ye X 《Electrophoresis》2000,21(5):925-929
Capillary zone electrophoresis was employed for the determination of pipemidic acid using an end-column amperometric detection with a carbon fiber microdisk array electrode, at a constant potential of -1.10 V vs. saturated calomel electrode. The optimum conditions of separation and detection were 1.2 x 10(-4) mol/LNaOAc - 8.8 x 10(-4) mol/ LHOAc for the buffer solution, 20 kV for the separation voltage, 5 kV and 10 s for the injection voltage and the injection time. The limit of detection was 1.05 x 10(-7) mol/L or 189 amol (S/N=3). The relative standard deviation was 0.31% for the migration time and 2.0% for the electrophoretic peak current. The method was applied to determining pipemidic acid in human serum.  相似文献   

14.
A new environmentally friendly method is developed for preventing nonspecific biomolecules from adsorption on poly(dimethylsiloxane) (PDMS) surface via in situ covalent modification. o-[(N-Succinimdyl)succiny]-o'-methyl-poly(ethylene glycol) (NSS-mPEG) was covalently grafted onto PDMS microchannel surface that was pretreated by air-plasma and silanized with 3-aminopropyl-triethoxysilanes (APTES). The modification processes were carried out in aqueous solution without any organic solvent. The mPEG side chains displayed extended structure and created a nonionic hydrophilic polymer brushes layer on PDMS surface, which can effectively prevent the adsorption of biomolecules. The developed method had improved reproducibility of separation and stability of electroosmotic flow (EOF), enhanced hydrophilicity of surface and peak resolution, and decreased adsorption of biomolecules. EOF in the modified microchannel was strongly suppressed, compared with those in the native and silanized PDMS microchips. Seven amino acids have been efficiently separated and successfully detected on the coated PDMS microchip coupled with end-channel amperometric detection. Relative standard deviations (RSDs) of their migration time for run-to-run, day-to-day and chip-to-chip, were all below 2.3%. Moreover, the covalent-modified PDMS channels displayed long-term stability for 4 weeks. This novel coating strategy showed promising application in biomolecules separation.  相似文献   

15.
Dong Q  Yu D  Ye X  Jin W 《Electrophoresis》2001,22(1):128-133
Capillary zone electrophoresis was employed for the determination of human serum transferrin using end-column amperometric detection with a carbon fiber microelectrode at a constant potential of 1.9 V vs. saturated calomel electrode (SCE). The optimum conditions of separation and detection are 7.5 x 10(-4) mol/L Tris-3.44 x 10(-4) mol/L HCl for the buffer solution, 20 kV for the separation voltage, 5 kV and 10 s for the injection voltage and the injection time, respectively. The limit of detection is 6.7 x 10(-8) mol/L or 440 amol (S/N = 2). The relative standard deviations are 0.67% for the migration time and 1.5% for the electrophoretic peak current. The method was applied to the determination of transferrin in human serum. The recovery is between 93-104%.  相似文献   

16.
Capillary zone electrophoresis was employed for the determination of diclofenac sodium using an end-column amperometric detection with a carbon fiber microelectrode, at a constant potential of 0.83 V vs. saturated calomel electrode. The optimum conditions of separation and detection are 4.90 x 10(-3) mol/l Na2HPO4-3.10 x 10(-3) mol/l NaH2PO4 (pH 7.0) for the buffer solution, 10 kV for the separation voltage, 5 kV and 10 s for the injection voltage and the injection time, respectively. The limit of detection is 2.5 x 10(-6) mol/l or 5.2 fmol (S/N=2). The relative standard deviation is 0.8% for the migration time and 4.7% for the electrophoretic peak current. The method was applied to the determination of diclofenac sodium in human urine.  相似文献   

17.
Chen C  Teng W  Hahn JH 《Electrophoresis》2011,32(8):838-843
A nanoband electrode detector integrated with a dual-channel polydimethylsiloxane microchip is proposed for in-channel amperometric detection in microchip capillary electrophoresis. Gold nanoband electrodes, which were fabricated on SU-8 substrates with a 100-nm-width gold layer, were introduced into the dual-channel microchip to be an electrochemical detector. Due to the nano-sized width of the detector, the noise of the amperometric detection was significantly reduced, and a high separation resolution was achieved for monitoring the analytes. The detection sensitivity of the system was improved by high signal-to-noise ratio, and a low detection limit on microchip was obtained for p-aminophenol (2.09 nM). Because of the high resolution in measuring half-peak width, the plate number that is used to evaluate the separation efficiency was 1.5-fold higher than that using 50-μm-width electrochemical detector. The effect of sample injection time and data acquisition time on separation efficiency was investigated, and an attractive separation efficiency was achieved with a plate number up to 17,500.  相似文献   

18.
《Electroanalysis》2004,16(21):1806-1813
A highly sensitive amperometric glucose biosensor based on immobilizing glucose oxidase in electropolymerized poly(o‐phenylenediamine) film on glassy carbon electrode coated sequentially with copper and palladium layers has been developed. The steady‐state amperometric response to glucose was determined by means of the oxidation of hydrogen peroxide generated by the enzymatic reaction at a potential of either +0.70 or +0.40 V (vs. Ag|AgCl reference). The deposited copper/palladium layer showed great enhancement in the performance of the enzyme electrode, possibly due to its better electrocatalytic activity for hydrogen peroxide oxidation and large surface area. Effects of the relative loading of palladium, enzyme and polymer on the electrode performance were examined in detail. Sensitivity and detection limit for glucose determinations at +0.70 V were about 7.3 μA/mM and 0.1 μM, respectively. A wide linear range up to 6.0 mM glucose could be achieved. Electrode performance was superior to similar works reported in the literature. The response time was less than 2 s and its lifetime was longer than three months. The permeable polyphenylenediamine film also offered good anti‐interference ability to ascorbic acid, uric acid and acetaminophen, especially when a detection potential of +0.40 V was employed.  相似文献   

19.
Wu Y  Lin JM  Su R  Qu F  Cai Z 《Talanta》2004,64(2):338-344
An end-channel amperometric detector with a guide tube for working electrode was designed and integrated on a home-made glass microchip. The guide tube was directly patterned and fabricated at the end of the detection reservoir, which made the fixation and alignment of working electrode relatively easy. The fabrication was carried out in a two-step etching process. A 30 μm carbon fiber microdisk electrode and Pt cathode were also integrated onto the amperometric detector. The characteristics and primary performance of the home-made microchip capillary electrophoresis (MCCE) were investigated with neurotransmitters. The baseline separation of dopamine (DA), catechol (CA) and epinephrine (EP) was achieved within 80 s. Separation parameters such as injection time, buffer components, pH of the buffer were studied. Relative standard deviations of not more than 6.0% were obtained for both peak currents and migration times. Under the selected separation conditions, the response for DA was linear from 5 to 200 μM and from 20 to 800 μM for CA. The limits of detection of DA and CA were 0.51 and 2.9 μM, respectively (S/N=3).  相似文献   

20.
In this paper, a simple and green modification method is developed for biomolecules analysis on poly(dimethylsiloxane) (PDMS) microchip with successful depression of nonspecific biomolecules adsorption. O-[(N-succinimdyl)succiny]-o'-methyl-poly(ethylene glycol) was explored to form hydrophilic surface via in-situ grafting onto pre-coated chitosan (Chit) from aqueous solution in the PDMS microchannel. The polysaccharide chains backbone of Chit was strongly attracted onto the surface of PDMS via hydrophobic interaction combined with hydrogen bonding in an alkaline medium. The methyl-poly(ethylene glycol) (mPEG) could produce hydrophilic domains on the mPEG/aqueous interface, which generated brush-like coating in this way and revealed perfect resistance to nonspecific adsorption of biomolecules. This strategy could greatly improve separation efficiency and reproducibility of biomolecules. Amino acids and proteins could be efficiently separated and successfully detected on the coated microchip coupled with end-channel amperometric detection at a copper electrode. In addition, it offered an effective means for preparing biocompatible and hydrophilic surface on microfluidic devices, which may have potential use in the biological analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号