首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Let ${\mathcal{M}_{g,\epsilon}}$ be the ${\epsilon}$ -thick part of the moduli space ${\mathcal{M}_g}$ of closed genus g surfaces. In this article, we show that the number of balls of radius r needed to cover ${\mathcal{M}_{g,\epsilon}}$ is bounded below by ${(c_1g)^{2g}}$ and bounded above by ${(c_2g)^{2g}}$ , where the constants c 1, c 2depend only on ${\epsilon}$ and r, and in particular not on g. Using this counting result we prove that there are Riemann surfaces of arbitrarily large injectivity radius that are not close (in the Teichmüller metric) to a finite cover of a fixed closed Riemann surface. This result illustrates the sharpness of the Ehrenpreis conjecture.  相似文献   

2.
Let \(\mathcal{G}\) be a triangulation of the sphere with vertex set V, such that the faces of the triangulation are properly coloured black and white. Motivated by applications in the theory of bitrades, Cavenagh and Wanless defined \(\mathcal{A}_W\) to be the abelian group generated by the set V, with relations r+c+s = 0 for all white triangles with vertices r, c and s. The group \(\mathcal{A}_B\) can be de fined similarly, using black triangles. The paper shows that \(\mathcal{A}_W\) and \(\mathcal{A}_B\) are isomorphic, thus establishing the truth of a well-known conjecture of Cavenagh and Wanless. Connections are made between the structure of \(\mathcal{A}_W\) and the theory of asymmetric Laplacians of finite directed graphs, and weaker results for orientable surfaces of higher genus are given. The relevance of the group \(\mathcal{A}_W\) to the understanding of the embeddings of a partial latin square in an abelian group is also explained.  相似文献   

3.
A Gizatullin surface is a normal affine surface V over $ \mathbb{C} $ , which can be completed by a zigzag; that is, by a linear chain of smooth rational curves. In this paper we deal with the question of uniqueness of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations on such a surface V up to automorphisms. The latter fibrations are in one to one correspondence with $ \mathbb{C}_{{\text{ + }}} $ -actions on V considered up to a “speed change”. Non-Gizatullin surfaces are known to admit at most one $ \mathbb{A}^{1} $ -fibration VS up to an isomorphism of the base S. Moreover, an effective $ \mathbb{C}^{ * } $ -action on them, if it does exist, is unique up to conjugation and inversion t $ \mapsto $ t ?1 of $ \mathbb{C}^{ * } $ . Obviously, uniqueness of $ \mathbb{C}^{ * } $ -actions fails for affine toric surfaces. There is a further interesting family of nontoric Gizatullin surfaces, called the Danilov-Gizatullin surfaces, where there are in general several conjugacy classes of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations, see, e.g., [FKZ1]. In the present paper we obtain a criterion as to when $ \mathbb{A}^{{\text{1}}} $ -fibrations of Gizatullin surfaces are conjugate up to an automorphism of V and the base $ S \cong \mathbb{A}^{{\text{1}}} $ . We exhibit as well large subclasses of Gizatullin $ \mathbb{C}^{ * } $ -surfaces for which a $ \mathbb{C}^{ * } $ -action is essentially unique and for which there are at most two conjugacy classes of $ \mathbb{A}^{{\text{1}}} $ -fibrations over $ \mathbb{A}^{{\text{1}}} $ .  相似文献   

4.
Four distinct elements a, b, c, and d of a poset form a diamond if \(a< b and \(a . A subset of a poset is diamond-free if no four elements of the subset form a diamond. Even in the Boolean lattices, finding the size of the largest diamond-free subset remains an open problem. In this paper, we consider the linear lattices—poset of subspaces of a finite dimensional vector space over a finite field of order q—and extend the results of Griggs et al. (J. Combin. Theory Ser. A 119(2):310–322, 2012) on the Boolean lattices, to prove that the number of elements of a diamond-free subset of a linear lattice can be no larger than \(2+\frac {1}{q+1}\) times the width of the lattice, so that this fraction tends to 2 as \(q \longrightarrow \infty \) . In addition, using an algebraic technique, we introduce so-called diamond matchings, and prove that for linear lattices of dimensions up to 5, the size of a largest diamond-free subset is equal to the sum of the largest two rank numbers of the lattice.  相似文献   

5.
6.
Let Γ=(X,R) be a connected graph. Then Γ is said to be a completely regular clique graph of parameters (s,c) with s≥1 and c≥1, if there is a collection \(\mathcal{C}\) of completely regular cliques of size s+1 such that every edge is contained in exactly c members of  \(\mathcal{C}\) . In this paper, we show that the parameters of \(C\in\mathcal{C}\) as a completely regular code do not depend on \(C\in\mathcal{C}\) . As a by-product we have that all completely regular clique graphs are distance-regular whenever \(\mathcal {C}\) consists of edges. We investigate the case when Γ is distance-regular, and show that Γ is a completely regular clique graph if and only if it is a bipartite half of a distance-semiregular graph.  相似文献   

7.
We consider the two-player, complete information game of Cops and Robber played on undirected, finite, reflexive graphs. A number of cops and one robber are positioned on vertices and take turns in sliding along edges. The cops win if, after a move, a cop and the robber are on the same vertex. The minimum number of cops needed to catch the robber on a graph is called the cop number of that graph. Let c(g) be the supremum over all cop numbers of graphs embeddable in a closed orientable surface of genus g, and likewise ${\tilde c(g)}$ for non-orientable surfaces. It is known (Andreae, 1986) that, for a fixed surface, the maximum over all cop numbers of graphs embeddable in this surface is finite. More precisely, Quilliot (1985) showed that c(g) ≤ 2g + 3, and Schröder (2001) sharpened this to ${c(g)\le \frac32g + 3}$ . In his paper, Andreae gave the bound ${\tilde c(g) \in O(g)}$ with a weak constant, and posed the question whether a stronger bound can be obtained. Nowakowski & Schröder (1997) obtained ${\tilde c(g) \le 2g+1}$ . In this short note, we show ${\tilde c(g) \leq c(g-1)}$ , for any g ≥ 1. As a corollary, using Schröder’s results, we obtain the following: the maximum cop number of graphs embeddable in the projective plane is 3, the maximum cop number of graphs embeddable in the Klein Bottle is at most 4, ${\tilde c(3) \le 5}$ , and ${\tilde c(g) \le \frac32g + 3/2}$ for all other g.  相似文献   

8.
We prove a new local inequality for divisors on surfaces and utilize it to compute α-invariants of singular del Pezzo surfaces, which implies that del Pezzo surfaces of degree one whose singular points are of type $\mathbb{A}_{1}$ , $\mathbb{A}_{2}$ , $\mathbb{A}_{3}$ , $\mathbb{A}_{4}$ , $\mathbb{A}_{5}$ , or $\mathbb{A}_{6}$ are Kähler-Einstein.  相似文献   

9.
We first show that the union of a projective curve with one of its extremal secant lines satisfies the linear general position principle for hyperplane sections. We use this to give an improved approximation of the Betti numbers of curves ${{\mathcal C}\subset \mathbb P^r_K}$ of maximal regularity with ${{\rm deg}\, {\mathcal C}\leq 2r -3}$ . In particular we specify the number and degrees of generators of the vanishing ideal of such curves. We apply these results to study surfaces ${X \subset \mathbb P^r_K}$ whose generic hyperplane section is a curve of maximal regularity. We first give a criterion for ??an early descent of the Hartshorne-Rao function?? of such surfaces. We use this criterion to give a lower bound on the degree for a class of these surfaces. Then, we study surfaces ${X \subset\mathbb P^r_K}$ for which ${h^1(\mathbb P^r_K, {\mathcal I}_X(1))}$ takes a value close to the possible maximum deg X ? r +?1. We give a lower bound on the degree of such surfaces. We illustrate our results by a number of examples, computed by means of Singular, which show a rich variety of occuring phenomena.  相似文献   

10.
Simply connected three-dimensional homogeneous manifolds ${\mathbb{E}(\kappa, \tau)}$ , with four-dimensional isometry group, have a canonical Spinc structure carrying parallel or Killing spinors. The restriction to any hypersurface of these parallel or Killing spinors allows to characterize isometric immersions of surfaces into ${\mathbb{E}(\kappa, \tau)}$ . As application, we get an elementary proof of a Lawson type correspondence for constant mean curvature surfaces in ${\mathbb{E}(\kappa, \tau)}$ . Real hypersurfaces of the complex projective space and the complex hyperbolic space are also characterized via Spinc spinors.  相似文献   

11.
For a block design ${\mathcal{D}}$ , a series of block intersection graphs G i , or i-BIG( ${\mathcal{D}}$ ), i = 0, . . . ,k is defined in which the vertices are the blocks of ${\mathcal{D}}$ , with two vertices adjacent if and only if the corresponding blocks intersect in exactly i elements. A silver graph G is defined with respect to a maximum independent set of G, called an α-set. Let G be an r-regular graph and c be a proper (r + 1)-coloring of G. A vertex x in G is said to be rainbow with respect to c if every color appears in the closed neighborhood ${N[x] = N(x) \cup \{x\}}$ . Given an α-set I of G, a coloring c is said to be silver with respect to I if every ${x\in I}$ is rainbow with respect to c. We say G is silver if it admits a silver coloring with respect to some I. Finding silver graphs is of interest, for a motivation and progress in silver graphs see Ghebleh et al. (Graphs Combin 24(5):429–442, 2008) and Mahdian and Mahmoodian (Bull Inst Combin Appl 28:48–54, 2000). We investigate conditions for 0-BIG( ${\mathcal{D}}$ ) and 1-BIG( ${\mathcal{D}}$ ) of Steiner 2-designs ${{\mathcal{D}}=S(2,k,v)}$ to be silver.  相似文献   

12.
This paper is a part of our general aim to study properties of elliptic and ordered elliptic geometries and then using some of these properties to introduce new concepts and develop their theories. If ${(P,\mathfrak{G}, \equiv,\tau)}$ denotes an elliptic geometry ordered via a separation ?? then there are polar points o and ?? and on the line ${ \overline{K} := \overline{\infty,o}}$ there can be established an operation ??+?? such that ${(\overline{K},+)}$ becomes a commutative group and the map ${ a^+ :\overline{K}\to \overline{K} ; x \mapsto a + x}$ is a motion on ${\overline{K}}$ . The separation ?? induces on ${\overline{K}}$ a cyclic order ?? with [o, e, ??] = 1 such that ${(\overline{K},+,\omega)}$ becomes a cyclic ordered group. For ${a,b \in K := \overline{K} {\setminus}\{\infty\}}$ we set ${a < b :\Longleftrightarrow [a,b,\infty] =1}$ and for all ${a\in K\,a < \infty}$ . Then (K,?<) is a totally ordered set. We show there is a surjective distance function: $$ \lambda : P \times P \to \overline{K}_+ := \{x \in \overline{K}\,|\,o \leq x\leq\infty\}, $$ with ?? ${\lambda(a,b) = \lambda(c,d) \ \Longleftrightarrow (a,b) \equiv (c,d)}$ ??. We prove in the first part of our project like (cf. Gr?ger in Mitt Math Ges Hamburg 11:441?C457, 1987) the following triangle-inequality: (cf. Theorem 8.2). If (a, b, c) is a triangle consisting of pairwise not polar points with ??(a, c), ??(b, c) < e then ??(a, b) ?? ??(a, c) + ??(b, c) < ??.  相似文献   

13.
Let X be a v-set and ${\mathcal{B}}$ a collection of r × c arrays with elements in X. Two elements of X are collinear if they are on the same grid line (row or column). A pair ${(X, \mathcal{B})}$ is called an (r × c, λ) grid-block design if every two distinct elements in X are collinear exactly λ times in the arrays of ${\mathcal{B}}$ . This design has absorbed much attention due to its use in DNA library screening. In this paper, we prove that the necessary conditions for the existence of (2 × c, λ) grid-block designs of order v with ${c\in \{3, 4, 5\}}$ and any integer λ ≥ 1 are also sufficient.  相似文献   

14.
Let ${\pi=(d_{1},d_{2},\ldots,d_{n})}$ and ${\pi'=(d'_{1},d'_{2},\ldots,d'_{n})}$ be two non-increasing degree sequences. We say ${\pi}$ is majorizated by ${\pi'}$ , denoted by ${\pi \vartriangleleft \pi'}$ , if and only if ${\pi\neq \pi'}$ , ${\sum_{i=1}^{n}d_{i}=\sum_{i=1}^{n}d'_{i}}$ , and ${\sum_{i=1}^{j}d_{i}\leq\sum_{i=1}^{j}d'_{i}}$ for all ${j=1,2,\ldots,n}$ . If there exists one connected graph G with ${\pi}$ as its degree sequence and ${c=(\sum_{i=1}^{n}d_{i})/2-n+1}$ , then G is called a c-cyclic graph and ${\pi}$ is called a c-cyclic degree sequence. Suppose ${\pi}$ is a non-increasing c-cyclic degree sequence and ${\pi'}$ is a non-increasing graphic degree sequence, if ${\pi \vartriangleleft \pi'}$ and there exists some t ${(2\leq t\leq n)}$ such that ${d'_{t}\geq c+1}$ and ${d_{i}=d'_{i}}$ for all ${t+1\leq i\leq n}$ , then the majorization ${\pi \vartriangleleft \pi'}$ is called a normal majorization. Let μ(G) be the signless Laplacian spectral radius, i.e., the largest eigenvalue of the signless Laplacian matrix of G. We use C π to denote the class of connected graphs with degree sequence π. If ${G \in C_{\pi}}$ and ${\mu(G)\geq \mu(G')}$ for any other ${G'\in C_{\pi}}$ , then we say G has greatest signless Laplacian radius in C π . In this paper, we prove that: Let π and π′ be two different non-increasing c-cyclic (c ≥ 0) degree sequences, G and G′ be the connected c-cyclic graphs with greatest signless Laplacian spectral radii in C π and C π', respectively. If ${\pi \vartriangleleft \pi'}$ and it is a normal majorization, then ${\mu(G) < \mu(G')}$ . This result extends the main result of Zhang (Discrete Math 308:3143–3150, 2008).  相似文献   

15.
Consider the set $ {\mathcal{U}} $ of real numbers q ≧ 1 for which only one sequence (c i ) of integers 0 ≦ c i q satisfies the equality Σ i=1 c i q ?i = 1. We show that the set of algebraic numbers in $ {\mathcal{U}} $ is dense in the closure $ \overline {\mathcal{U}} $ of $ {\mathcal{U}} $ .  相似文献   

16.
Theorems on the inclusion of a finite group G in a solvably saturated formation $\mathfrak{F}$ are proved in terms of $\mathfrak{F}$ -centrality and c-normality.  相似文献   

17.
Consider the difference equation on \({{\mathbb{C}}^n}\) : \({\Delta_{c_1}\Delta_{c_2}\cdots \Delta_{c_m}f(z)=0}\) , where \({c_1,c_2, \ldots, c_m \in \mathbb{C}^n\backslash \{0\}}\) and \({\Delta_{c_k}f(z)=f(z+c_k)-f(z)}\) . In this paper, we assume that c 1, . . . , c m are pairwise linearly independent over \({\mathbb{R}}\) , except for the case m = 2. Firstly, we establish a general representation of its entire solutions. Secondly, under the condition L ≤ n, we give a necessary and sufficient conditions for entire solutions to have representations as a sum of c k -periodic entire functions. Here L is the maximum integer such that \({c_{k_1},c_{k_2}, \ldots,c_{k_L}}\) are pairwise linearly independent over \({\mathbb{C}}\) for some k 1,k 2, . . . ,k L . Finally, we show that every entire solution has a representation as a sum of c k -periodic meromorphic functions.  相似文献   

18.
Hopf??s theorem on surfaces in ${\mathbb{R}^3}$ with constant mean curvature (Hopf in Math Nach 4:232?C249, 1950-51) was a turning point in the study of such surfaces. In recent years, Hopf-type theorems appeared in various ambient spaces, (Abresch and Rosenberg in Acta Math 193:141?C174, 2004 and Abresch and Rosenberg in Mat Contemp Sociedade Bras Mat 28:283-298, 2005). The simplest case is the study of surfaces with parallel mean curvature vector in ${M_k^n \times \mathbb{R}, n \ge 2}$ , where ${M_k^n}$ is a complete, simply-connected Riemannian manifold with constant sectional curvature k ?? 0. The case n?=?2 was solved in Abresch and Rosenberg 2004. Here we describe some new results for arbitrary n.  相似文献   

19.
In this work, we relate the extrinsic curvature of surfaces with respect to the Euclidean metric and any metrics that are conformal to the Euclidean metric. We introduce the space ${\mathbb{E}_3}$ ??the 3-dimensional real vector space equipped with a conformally flat metric that is a solution of the Einstein equation. We characterize the surfaces of rotation with constant extrinsic curvature in the space ${\mathbb{E}_3}$ . We obtain a one-parameter family of two-sheeted hyperboloids that are complete surfaces with zero extrinsic curvature in ${\mathbb{E}_3}$ . Moreover, we obtain a one-parameter family of cones and show that there exists another one-parameter family of complete surfaces of rotation with zero extrinsic curvature in ${\mathbb{E}_3}$ . Moreover, we show that there exist complete surfaces with constant negative extrinsic curvature in ${\mathbb{E}_3}$ . As an application we prove that there exist complete surfaces with Gaussian curvature K ?? ? ?? < 0, in contrast with Efimov??s Theorem for the Euclidean space, and Schlenker??s Theorem for the hyperbolic space.  相似文献   

20.
This paper introduces a new technique for the formulation of parametric surfaces. Applying translation operations to tangent vectors ${n_{\circ} {\bf \upsilon}}$ results in null point pairs ${\tau}$ . We treat these null point pairs as surface and mesh curvature control points which can be interpolated and exponentiated to construct continuous topological transformations ${\mathcal{K}}$ of the form ${e^{{-}\frac{\tau}{2}}}$ 2. Some basic algorithms are proposed, including the boost which bends a line to a circle of curvature ${\kappa}$ , and the twisted boost which generates the Hopf fibration. We investigate methods to control curvature in two orthogonal directions u and v and examine a few distance-based and linear weighting techniques for synthesizing surface patches using multiple curvature control points. We consider the expressivity of the technique in manipulating meshes, and find that applying these rotors to mesh points provides a novel and computationally efficient method for creating boosted forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号