首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the more successful techniques for solving zero-one integer programs has been the implicit enumeration strategy first introduced by E. Balas. However, experience has shown that the efficiency of these enumerative techniques depends critically upon the bumber of variables. In this paper an algorithm is developed and computational experience provided for solving zero-one integer programs with many variables and few constraints. Sub-problems solved via implicit enumeration are generated from the linear programming relaxation and the variables in these sub-problems correspond to the fractional variables obtained in the linear program. Since the number of fractional variables in the linear program is bounded by the number of constraints in the linear program, the sub-problems will in general contain many fewer variables than the original zero-one integer program.  相似文献   

2.
The 0–1 mixed integer programming problem is used for modeling many combinatorial problems, ranging from logical design to scheduling and routing as well as encompassing graph theory models for resource allocation and financial planning. This paper provides a survey of heuristics based on mathematical programming for solving 0–1 mixed integer programs (MIP). More precisely, we focus on the stand-alone heuristics for 0–1 MIP as well as those heuristics that use linear programming techniques or solve a series of linear programming models or reduced problems, deduced from the initial one, in order to produce a high quality solution of a considered problem. Our emphasis will be on how mathematical programming techniques can be used for approximate problem solving, rather than on comparing performances of heuristics.  相似文献   

3.
We introduce and study two-stage stochastic symmetric programs with recourse to handle uncertainty in data defining (deterministic) symmetric programs in which a linear function is minimized over the intersection of an affine set and a symmetric cone. We present a Benders’ decomposition-based interior point algorithm for solving these problems and prove its polynomial complexity. Our convergence analysis proved by showing that the log barrier associated with the recourse function of stochastic symmetric programs behaves a strongly self-concordant barrier and forms a self-concordant family on the first stage solutions. Since our analysis applies to all symmetric cones, this algorithm extends Zhao’s results [G. Zhao, A log barrier method with Benders’ decomposition for solving two-stage stochastic linear programs, Math. Program. Ser. A 90 (2001) 507–536] for two-stage stochastic linear programs, and Mehrotra and Özevin’s results [S. Mehrotra, M.G. Özevin, Decomposition-based interior point methods for two-stage stochastic semidefinite programming, SIAM J. Optim. 18 (1) (2007) 206–222] for two-stage stochastic semidefinite programs.  相似文献   

4.
In this paper, we consider a collision detection problem that frequently arises in the field of robotics. Given a set of bodies with their initial positions and trajectories, we wish to identify the first collision that occurs between any two bodies, or to determine that none exists. For the case of bodies having linear trajectories, we construct a convex hull representation of the integer programming model of S.Z. Selim and H.A. Almohamad [European Journal of Operational Research 119 (1) (1999) 121–129], and compare the relative effectiveness in solving this problem via the resultant linear program. We also extend this analysis to model a situation in which bodies move along piecewise linear trajectories, possibly rotating at the end of each linear segment. For this case, we again compare an integer programming approach with its linear programming convex hull representation, and exhibit the effectiveness of solving a sequence of mathematical programs for each time segment over a global programming scheme which considers all segments at once. We provide computational results to illustrate the effect of various numbers of bodies present in the collision scenarios, as well as the times at which the first collision occurs.  相似文献   

5.
Using constraint partitioning and variable elimination, the authors have recently developed an efficient algorithm for solving linear goal programming problems. However, many goal programs require some or all of the decision variables to be integer valued. This paper shows how the new partitioning algorithm can be extended with a modified branch and bound strategy to solve both pure and mixed type integer goal programming problems. A potential problem in combining the partitioning algorithm and the branch and bound search scheme is presented and resolved.  相似文献   

6.
We consider in this paper the non-linear integer programming problem with varying right hand side and objective function coefficients. We establish what additional information to keep in the implicit enumeration tree, when solving the original problem, in order to provide us with bounds on the optimal value of a perturbed problem. The results obtained are extensions of the results given by Schrage and Wolsey [10] for linear integer programs.  相似文献   

7.
We present branching-on-hyperplane methods for solving mixed integer linear and mixed integer convex programs. In particular, we formulate the problem of finding a good branching hyperplane using a novel concept of adjoint lattice. We also reformulate the problem of rounding a continuous solution to a mixed integer solution. A worst case complexity of a Lenstra-type algorithm is established using an approximate log-barrier center to obtain an ellipsoidal rounding of the feasible set. The results for the mixed integer convex programming also establish a complexity result for the mixed integer second order cone programming and mixed integer semidefinite programming feasibility problems as a special case. Our results motivate an alternative reformulation technique and a branching heuristic using a generalized (e.g., ellipsoidal) norm reduced basis available at the root node.  相似文献   

8.
The present paper develops an algorithm for ranking the integer feasible solutions of a quadratic integer programming (QIP) problem. A linear integer programming (LIP) problem is constructed which provides bounds on the values of the objective function of the quadratic problem. The integer feasible solutions of this related integer linear programming problem are systematically scanned to rank the integer feasible solutions of the quadratic problem in non-decreasing order of the objective function values. The ranking in the QIP problem is useful in solving a nonlinear integer programming problem in which some other complicated nonlinear restrictions are imposed which cannot be included in the simple linear constraints of QIP, the objective function being still quadratic.  相似文献   

9.
A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second-order conic sets. These cuts can be readily incorporated in branch-and-bound algorithms that solve either second-order conic programming or linear programming relaxations of conic integer programs at the nodes of the branch-and-bound tree. Central to our approach is a reformulation of the second-order conic constraints with polyhedral second-order conic constraints in a higher dimensional space. In this representation the cuts we develop are linear, even though they are nonlinear in the original space of variables. This feature leads to a computationally efficient implementation of nonlinear cuts for conic mixed-integer programming. The reformulation also allows the use of polyhedral methods for conic integer programming. We report computational results on solving unstructured second-order conic mixed-integer problems as well as mean–variance capital budgeting problems and least-squares estimation problems with binary inputs. Our computational experiments show that conic mixed-integer rounding cuts are very effective in reducing the integrality gap of continuous relaxations of conic mixed-integer programs and, hence, improving their solvability. This research has been supported, in part, by Grant # DMI0700203 from the National Science Foundation.  相似文献   

10.
本文提出一种解线性目标规划及整数线性目标规划的《量化优先因子法》,即把目标规划中表示优先等级的优先因子 pl( l=1 ,2 ,… ,L)用能从数量级上刻划优先因子 Pl Pl+ 1的本质特征的数来表示 ,进而用 SAS/OR软件包中解线性规划的 LP过程即可求解此线性目标规划 .通过实例给出算法与用 LP过程求解的程序 .  相似文献   

11.
凹整数规划的分枝定界解法   总被引:3,自引:0,他引:3  
凹整数规划是一类重要的非线性整数规划问题,也是在经济和管理中有着广泛应用的最优化问题.本文主要研究用分枝定界方法求解凹整数规划问题,这一方法的基本思想是对目标函数进行线性下逼近,然后用乘子搜索法求解连续松弛问题.数值结果表明,用这种分枝定界方法求解凹整数规划是有效的.  相似文献   

12.
Commercial branch and bound codes for solving the general mixed integer linear programming problem commence by solving the linear programming relaxation of the submitted problem, terminating if the relaxation is unbounded. It is assumed that the submitted problem is either unbounded or has no feasible solutions. It is shown that the assumption is correct for all integer programming problems which can be submitted to the currently available codes (though counter examples which cannot be so submitted are given), but that the assumption is generally incorrect for discrete linear programming problems (using for example the special ordered set construct). Sufficient conditions on formulations to ensure its correctness are given. One possible formulation approach, applicable to special ordered set situations, is discussed.  相似文献   

13.
Lifting is a procedure for deriving valid inequalities for mixed-integer sets from valid inequalities for suitable restrictions of those sets. Lifting has been shown to be very effective in developing strong valid inequalities for linear integer programming and it has been successfully used to solve such problems with branch-and-cut algorithms. Here we generalize the theory of lifting to conic integer programming, i.e., integer programs with conic constraints. We show how to derive conic valid inequalities for a conic integer program from conic inequalities valid for its lower-dimensional restrictions. In order to simplify the computations, we also discuss sequence-independent lifting for conic integer programs. When the cones are restricted to nonnegative orthants, conic lifting reduces to the lifting for linear integer programming as one may expect.  相似文献   

14.
利用松弛最优邻近解临域整数点搜索法作过滤条件,建立求解整数规划的新方法——直接搜索算法,利用直接搜索算法并借助Matlab软件求解整数线性规划投资组合模型.数值结果表明了模型的建立与提出方法的有效性.  相似文献   

15.
整数规划是对全部或部分决策变量为整数的最优化问题的模型、算法及应用等的研究, 是运筹学和管理科学中应用最广泛的优化模型之一. 首先简要回顾整数规划的历史和发展进程, 概述线性和非线性整数规划的一些经典方法. 然后着重讨论整数规划若干新进展, 包括0-1二次规划的半定规划~(SDP)~松弛和随机化方法, 带半连续变量和稀疏约束的优化问题的整数规划模型和方法, 以及0-1二次规划的协正锥规划表示和协正锥的层级半定规划~(SDP)~逼近. 最后, 对整数规划未来研究方向进行展望并对一些公开问题进行讨论.  相似文献   

16.
Dinkelbach's algorithm was developed to solve convex fractinal programming. This method achieves the optimal solution of the optimisation problem by means of solving a sequence of non-linear convex programming subproblems defined by a parameter. In this paper it is shown that Dinkelbach's algorithm can be used to solve general fractional programming. The applicability of the algorithm will depend on the possibility of solving the subproblems. Dinkelbach's extended algorithm is a framework to describe several algorithms which have been proposed to solve linear fractional programming, integer linear fractional programming, convex fractional programming and to generate new algorithms. The applicability of new cases as nondifferentiable fractional programming and quadratic fractional programming has been studied. We have proposed two modifications to improve the speed-up of Dinkelbachs algorithm. One is to use interpolation formulae to update the parameter which defined the subproblem and another truncates the solution of the suproblem. We give sufficient conditions for the convergence of these modifications. Computational experiments in linear fractional programming, integer linear fractional programming and non-linear fractional programming to evaluate the efficiency of these methods have been carried out.  相似文献   

17.
We introduce orbital branching, an effective branching method for integer programs containing a great deal of symmetry. The method is based on computing groups of variables that are equivalent with respect to the symmetry remaining in the problem after branching, including symmetry that is not present at the root node. These groups of equivalent variables, called orbits, are used to create a valid partitioning of the feasible region that significantly reduces the effects of symmetry while still allowing a flexible branching rule. We also show how to exploit the symmetries present in the problem to fix variables throughout the branch-and-bound tree. Orbital branching can easily be incorporated into standard integer programming software. Through an empirical study on a test suite of symmetric integer programs, the question as to the most effective orbit on which to base the branching decision is investigated. The resulting method is shown to be quite competitive with a similar method known as isomorphism pruning and significantly better than a state-of-the-art commercial solver on symmetric integer programs.  相似文献   

18.
The solution of large scale integer linear programming models is generally dependent, in some way, upon the branch and bound technique, which can be quite time consuming. This paper describes a parallel branch and bound algorithm which achieves super linear efficiency in solving integer linear programming models on a multiprocessor computer. The algorithm is used to solve the Haldi and IBM test problems as well as a system design model.  相似文献   

19.
In this paper, a pair of symmetric dual second-order fractional programming problems is formulated and appropriate duality theorems are established. These results are then used to discuss the minimax mixed integer symmetric dual fractional programs.  相似文献   

20.
An outer-approximation algorithm is presented for solving mixed-integer nonlinear programming problems of a particular class. Linearity of the integer (or discrete) variables, and convexity of the nonlinear functions involving continuous variables are the main features in the underlying mathematical structure. Based on principles of decomposition, outer-approximation and relaxation, the proposed algorithm effectively exploits the structure of the problems, and consists of solving an alternating finite sequence of nonlinear programming subproblems and relaxed versions of a mixed-integer linear master program. Convergence and optimality properties of the algorithm are presented, as well as a general discussion on its implementation. Numerical results are reported for several example problems to illustrate the potential of the proposed algorithm for programs in the class addressed in this paper. Finally, a theoretical comparison with generalized Benders decomposition is presented on the lower bounds predicted by the relaxed master programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号