首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We introduce a new Integer Linear Programming (ILP) approach for solving Integer Programming (IP) problems with bilinear objectives and linear constraints. The approach relies on a series of ILP approximations of the bilinear IP. We compare this approach with standard linearization techniques on random instances and a set of real-world product bundling problems.  相似文献   

2.
A hybrid algorithm to solve large scale zero–one integer programming problems has been developed. The algorithm combines branch-and-bound, enumeration and cutting plane techniques. Mixed-integer cuts are generated in the initial phase of the algorithm and added to the L.P. Benders cuts are derived and used implicitly but, except for the cut from the initial LP, are not stored. The algorithm has been implemented on an experimental basis in MPSX/370 using its Extended Control Language and Algorithmic Tools. A computational study based on five well-known difficult test problems and on three practical problems with up to 2000 zer–one variables shows that the hybrid code compares favorably with MIP/370 and with results published for other algorithms.  相似文献   

3.
4.
5.
We provide a complexity classification of four variants of robust integer programming when the underlying Graver basis is given. We discuss applications to robust multicommodity flows and multiway statistical table problems, and describe an effective parametrization of robust integer programming.  相似文献   

6.
7.
8.
When regarded as a shortest route problem, an integer program can be seen to have a particularly simple structure. This allows the development of an algorithm for finding thek th best solution to an integer programming problem with max{O(kmn), O(k logk)} operations. Apart from its value in the parametric study of an optimal solution, the approach leads to a general integer programming algorithm consisting of (1) problem relaxation, (2) solution of the relaxed problem parametrically by dynamic programming, and (3) generation ofk th best solutions until a feasible solution is found. Elementary methods based on duality for reducingk for a given problem relaxation are then outlined, and some examples and computational aspects are discussed.  相似文献   

9.
Linear programming duality is well understood and the reduced cost of a column is frequently used in various algorithms. On the other hand, for integer programs it is not clear how to define a dual function even though the subadditive dual theory has been developed a long time ago. In this work we propose a family of computationally tractable subadditive dual functions for integer programs. We develop a solution methodology that computes an optimal primal solution and an optimal subadditive dual function. We present computational experiments, which show that the new algorithm is tractable.  相似文献   

10.
整数规划是对全部或部分决策变量为整数的最优化问题的模型、算法及应用等的研究, 是运筹学和管理科学中应用最广泛的优化模型之一. 首先简要回顾整数规划的历史和发展进程, 概述线性和非线性整数规划的一些经典方法. 然后着重讨论整数规划若干新进展, 包括0-1二次规划的半定规划~(SDP)~松弛和随机化方法, 带半连续变量和稀疏约束的优化问题的整数规划模型和方法, 以及0-1二次规划的协正锥规划表示和协正锥的层级半定规划~(SDP)~逼近. 最后, 对整数规划未来研究方向进行展望并对一些公开问题进行讨论.  相似文献   

11.
For a linear integer programming problem, thelocal information contained at an optimal solution of the continuous linear programming extension stems from the theory of L.P. solutions. This paper proposes the use ofenvironmental information (of a global nature but pertaining to the discrete vicinity of ), in order to isolate the set of integer solutions which may be considered as true candidates for the optimum. The concept ofenumerative inequalities is introduced and it is shown how it can be obtained in the context of the convex outer-domain theory of Balas, Young, et al.Generally speaking, enumerative inequalities can be made arbitrarily strong (deep), but at the cost of an increasing amount of work (i.e. enumeration) for their construction. In particular cases, however, very little global information can produce enumerative inequalities stronger than anyvalid cut.This paper was presented at the 7th Mathematical Programming Symposium 1970, The Hague, The Netherlands.  相似文献   

12.
13.
In this review we describe recent developments in linear and integer (linear) programming. For over 50 years Operational Research practitioners have made use of linear optimisation models to aid decision making and over this period the size of problems that can be solved has increased dramatically, the time required to solve problems has decreased substantially and the flexibility of modelling and solving systems has increased steadily. Large models are no longer confined to large computers, and the flexibility of optimisation systems embedded in other decision support tools has made on-line decision making using linear programming a reality (and using integer programming a possibility). The review focuses on recent developments in algorithms, software and applications and investigates some connections between linear optimisation and other technologies.  相似文献   

14.
Constraint aggregation provides a method of formulating equivalent integer programs with a smaller number of constraints. This approach was widely researched in the seventies but its use was discounted due to large coefficients in the equivalent problem. We provide a method that yields numerically smaller constraint coefficients. This method has enabled us to investigate other computational issues relating to the use of constraint aggregation in solving integer programming problems, more thoroughly than has previously been possible.  相似文献   

15.
Logical relations occur frequently in integer programming problems and are modelled by introducing binary variables in association with linear expressions. Applications requiring constraints involving precedence, exclusion, implication and other conditions give rise to the logical relations OR and IMPLIES in the models. These relations will be considered in this paper from a modelling point of view and formulations investigated for situations where the logical variables link sets of integer variables. Valid inequalities (cuts) that can be added to a model will be developed for a number of the formulations and the computational benefits of these cuts will be considered from an experimental point of view by considering the performance of sets of problem instances. New formulations and combinations of older established formulations will be considered. It will be contended that tight formulations may not always be the most successful.  相似文献   

16.
The present paper develops an algorithm for ranking the integer feasible solutions of a quadratic integer programming (QIP) problem. A linear integer programming (LIP) problem is constructed which provides bounds on the values of the objective function of the quadratic problem. The integer feasible solutions of this related integer linear programming problem are systematically scanned to rank the integer feasible solutions of the quadratic problem in non-decreasing order of the objective function values. The ranking in the QIP problem is useful in solving a nonlinear integer programming problem in which some other complicated nonlinear restrictions are imposed which cannot be included in the simple linear constraints of QIP, the objective function being still quadratic.  相似文献   

17.
In contrast to methods of parametric linear programming which were developed soon after the invention of the simplex algorithm and are easily included as an extension of that method, techniques for parametric analysis on integer programs are not well known and require considerable effort to append them to an integer programming solution algorithm.The paper reviews some of the theory employed in parametric integer programming, then discusses algorithmic work in this area over the last 15 years when integer programs are solved by different methods. A summary of applications is included and the article concludes that parametric integer programming is a valuable tool of analysis awaiting further popularization.  相似文献   

18.
Del Pia  Alberto  Ma  Mingchen 《Mathematical Programming》2022,194(1-2):871-900
Mathematical Programming - A classic result by Cook, Gerards, Schrijver, and Tardos provides an upper bound of $$n Delta $$ on the proximity of optimal solutions of an Integer Linear Programming...  相似文献   

19.
Cut search is a new approach for solving integer programs based on extending edges of a cone to probe the solution space for sets of hyperplanes that are proxies for solution points in the space. Once all proxy hyperplanes associated with a given point have been intersected by at least one of the extended edges, this point is included in a set of points to be examined for feasibility (algorithmically or by inspection). Thereupon, all edges of the cone are extended an additional distance to create a cut by passing a hyperplane through the endpoints of these extended edges.The flexibility of the cut search procedure permits a variety of strategies for exploring and cutting into the solution space. One useful version arises by taking the proxy hyperplanes to be members of a positive or semipositive coordinate system. Relative to such a system the procedure can be organized to reduce the set of vectors to be examined for feasibility and also to generate deeper cuts at the end of the edge probe.  相似文献   

20.
Let ${P \subseteq {\mathbb R}^{m+n}}$ be a rational polyhedron, and let P I be the convex hull of ${P \cap ({\mathbb Z}^m \times {\mathbb R}^n)}$ . We define the integral lattice-free closure of P as the set obtained from P by adding all inequalities obtained from disjunctions associated with integral lattice-free polyhedra in ${{\mathbb R}^m}$ . We show that the integral lattice-free closure of P is again a polyhedron, and that repeatedly taking the integral lattice-free closure of P gives P I after a finite number of iterations. Such results can be seen as a mixed integer analogue of theorems by Chvátal and Schrijver for the pure integer case. One ingredient of our proof is an extension of a result by Owen and Mehrotra. In fact, we prove that for each rational polyhedron P, the split closures of P yield in the limit the set P I .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号