首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let ${\beta(\mathbb{N})}$ denote the Stone–?ech compactification of the set ${\mathbb{N}}$ of natural numbers (with the discrete topology), and let ${\mathbb{N}^\ast}$ denote the remainder ${\beta(\mathbb{N})-\mathbb{N}}$ . We show that, interpreting modal diamond as the closure in a topological space, the modal logic of ${\mathbb{N}^\ast}$ is S4 and that the modal logic of ${\beta(\mathbb{N})}$ is S4.1.2.  相似文献   

2.
The Dodd–Jensen Covering Lemma states that “if there is no inner model with a measurable cardinal, then for any uncountable set of ordinals X, there is a ${Y\in K}$ such that ${X\subseteq Y}$ and |X| = |Y|”. Assuming ZF+AD alone, we establish the following analog: If there is no inner model with an ${\mathbb {R}}$ –complete measurable cardinal, then the real core model ${K(\mathbb {R})}$ is a “very good approximation” to the universe of sets V; that is, ${K(\mathbb {R})}$ and V have exactly the same sets of reals and for any set of ordinals X with ${|{X}|\ge\Theta}$ , there is a ${Y\in K(\mathbb {R})}$ such that ${X\subseteq Y}$ and |X| = |Y|. Here ${\mathbb {R}}$ is the set of reals and ${\Theta}$ is the supremum of the ordinals which are the surjective image of ${\mathbb {R}}$ .  相似文献   

3.
For a sequence $\underline{u}=(u_n)_{n\in \mathbb{N }}$ of integers, let $t_{\underline{u}}(\mathbb{T })$ be the group of all topologically $\underline{u}$ -torsion elements of the circle group $\mathbb{T }:=\mathbb{R }/\mathbb{Z }$ . We show that for any $s\in ]0,1[$ and $m\in \{0,+\infty \}$ there exists $\underline{u}$ such that $t_{\underline{u}}(\mathbb{T })$ has Hausdorff dimension $s$ and $s$ -dimensional Hausdorff measure equal to $m$ (no other values for $m$ are possible). More generally, for dimension functions $f,g$ with $f(t)\prec g(t), f(t)\prec \!\!\!\prec t$ and $g(t)\prec \!\!\!\prec t$ we find $\underline{u}$ such that $t_{\underline{u}}(\mathbb{T })$ has at the same time infinite $f$ -measure and null $g$ -measure.  相似文献   

4.
We consider the (pure) braid groups $B_{n}(M)$ and $P_{n}(M)$ , where $M$ is the $2$ -sphere $\mathbb S ^{2}$ or the real projective plane $\mathbb R P^2$ . We determine the minimal cardinality of (normal) generating sets $X$ of these groups, first when there is no restriction on $X$ , and secondly when $X$ consists of elements of finite order. This improves on results of Berrick and Matthey in the case of $\mathbb S ^{2}$ , and extends them in the case of $\mathbb R P^2$ . We begin by recalling the situation for the Artin braid groups ( $M=\mathbb{D }^{2}$ ). As applications of our results, we answer the corresponding questions for the associated mapping class groups, and we show that for $M=\mathbb S ^{2}$ or $\mathbb R P^2$ , the induced action of $B_n(M)$ on $H_3(\widetilde{F_n(M)};\mathbb{Z })$ is trivial, $F_{n}(M)$ being the $n^\mathrm{th}$ configuration space of $M$ .  相似文献   

5.
Let $\mathfrak{g}$ be a semisimple Lie algebra and $\mathfrak{k}$ be a reductive subalgebra in $\mathfrak{g}$ . We say that a $\mathfrak{g}$ -module M is a $(\mathfrak{g},\mathfrak{k})$ -module if M, considered as a $\mathfrak{k}$ -module, is a direct sum of finite-dimensional $\mathfrak{k}$ -modules. We say that a $(\mathfrak{g},\mathfrak{k})$ -module M is of finite type if all $\mathfrak{k}$ -isotopic components of M are finite-dimensional. In this paper we prove that any simple $(\mathfrak{g},\mathfrak{k})$ -module of finite type is holonomic. A simple $\mathfrak{g}$ -module M is associated with the invariants V(M), V(LocM), and L(M) reflecting the ??directions of growth of M.?? We also prove that for a given pair $(\mathfrak{g},\mathfrak{k})$ the set of possible invariants is finite.  相似文献   

6.
For a holomorphic proper map F from the ball $\mathbb{B}^{n+1}$ into $\mathbb{B}^{N+1}$ that is C 3 smooth up to the boundary, the image $M=F(\partial\mathbb{B}^{n})$ is an immersed CR submanifold in the sphere $\partial \mathbb{B}^{N+1}$ on which some second fundamental forms II M and $\mathit{II}^{CR}_{M}$ can be defined. It is shown that when 4??n+1<N+1??4n?3, F is linear fractional if and only if $\mathit{II}_{M} - \mathit{II}_{M}^{CR} \equiv 0$ .  相似文献   

7.
We consider the groups ${\mathrm{Diff }}_\mathcal{B }(\mathbb{R }^n)$ , ${\mathrm{Diff }}_{H^\infty }(\mathbb{R }^n)$ , and ${\mathrm{Diff }}_{\mathcal{S }}(\mathbb{R }^n)$ of smooth diffeomorphisms on $\mathbb{R }^n$ which differ from the identity by a function which is in either $\mathcal{B }$ (bounded in all derivatives), $H^\infty = \bigcap _{k\ge 0}H^k$ , or $\mathcal{S }$ (rapidly decreasing). We show that all these groups are smooth regular Lie groups.  相似文献   

8.
We study zero-temperature Glauber dynamics on ${\mathbb{Z}^d}$ , which is a dynamic version of the Ising model of ferromagnetism. Spins are initially chosen according to a Bernoulli distribution with density p, and then the states are continuously (and randomly) updated according to the majority rule. This corresponds to the sudden quenching of a ferromagnetic system at high temperature with an external field, to one at zero temperature with no external field. Define ${p_c(\mathbb{Z}^d)}$ to be the infimum over p such that the system fixates at ???+??? with probability 1. It is a folklore conjecture that ${p_c(\mathbb{Z}^d) = 1/2}$ for every ${2 \le d \in \mathbb{N}}$ . We prove that ${p_c(\mathbb{Z}^d) \to 1/2}$ as d ?? ??.  相似文献   

9.
A double line ${C \subset \mathbb{P}^3}$ is a connected divisor of type (2, 0) on a smooth quadric surface. Fix ${(a, c) \in \mathbb{N}^2\ \backslash\ \{(0, 0)\}}$ . Let ${X \subset \mathbb{P}^3}$ be a general disjoint union of a lines and c double lines. Then X has maximal rank, i.e. for each ${t \in \mathbb{Z}}$ either ${h^1(\mathcal{I}_X(t)) = 0}$ or ${h^0(\mathcal{I}_X(t)) = 0}$ .  相似文献   

10.
A Gizatullin surface is a normal affine surface V over $ \mathbb{C} $ , which can be completed by a zigzag; that is, by a linear chain of smooth rational curves. In this paper we deal with the question of uniqueness of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations on such a surface V up to automorphisms. The latter fibrations are in one to one correspondence with $ \mathbb{C}_{{\text{ + }}} $ -actions on V considered up to a “speed change”. Non-Gizatullin surfaces are known to admit at most one $ \mathbb{A}^{1} $ -fibration VS up to an isomorphism of the base S. Moreover, an effective $ \mathbb{C}^{ * } $ -action on them, if it does exist, is unique up to conjugation and inversion t $ \mapsto $ t ?1 of $ \mathbb{C}^{ * } $ . Obviously, uniqueness of $ \mathbb{C}^{ * } $ -actions fails for affine toric surfaces. There is a further interesting family of nontoric Gizatullin surfaces, called the Danilov-Gizatullin surfaces, where there are in general several conjugacy classes of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations, see, e.g., [FKZ1]. In the present paper we obtain a criterion as to when $ \mathbb{A}^{{\text{1}}} $ -fibrations of Gizatullin surfaces are conjugate up to an automorphism of V and the base $ S \cong \mathbb{A}^{{\text{1}}} $ . We exhibit as well large subclasses of Gizatullin $ \mathbb{C}^{ * } $ -surfaces for which a $ \mathbb{C}^{ * } $ -action is essentially unique and for which there are at most two conjugacy classes of $ \mathbb{A}^{{\text{1}}} $ -fibrations over $ \mathbb{A}^{{\text{1}}} $ .  相似文献   

11.
We investigate real local isometric immersions of Kähler manifolds ${\mathbb{C}Q^2_c}$ of constant holomorphic curvature 4c into complex projective 3-space. Our main result is that the standard embedding of ${\mathbb{C}P^2}$ into ${\mathbb{C}P^3}$ has strong rigidity under the class of local isometric transformations. We also prove that there are no local isometric immersions of ${\mathbb{C}Q^2_c}$ into ${\mathbb{C}P^3}$ when they have different holomorphic curvature. An important method used is a study of the relationship between the complex structure of any locally isometric immersed ${\mathbb{C}Q^2_c}$ and the complex structure of the ambient space ${\mathbb{C}P^3}$ .  相似文献   

12.
Let M be a shift invariant subspace in the vector-valued Hardy space ${H_{E}^{2}(\mathbb{D})}$ H E 2 ( D ) . The Beurling–Lax–Halmos theorem says that M can be completely characterized by ${\mathcal{B}(E)}$ B ( E ) -valued inner function ${\Theta}$ Θ . When ${E = H^{2}(\mathbb{D}),\,H_{E}^{2}(\mathbb{D})}$ E = H 2 ( D ) , H E 2 ( D ) is the Hardy space on the bidisk ${H^{2}(\mathbb{D}^2)}$ H 2 ( D 2 ) . Recently, Qin and Yang (Proc Am Math Soc, 2013) determines the operator valued inner function ${\Theta(z)}$ Θ ( z ) for two well-known invariant subspaces in ${H^{2}(\mathbb{D}^{2})}$ H 2 ( D 2 ) . This paper generalizes the ${\Theta(z)}$ Θ ( z ) by Qin and Yang (Proc Am Math Soc, 2013) and deal with the structure of ${M = {\Theta}(z)H^{2}(\mathbb{D}^{2})}$ M = Θ ( z ) H 2 ( D 2 ) when M is an invariant subspace in ${H^{2}(\mathbb{D}^{2})}$ H 2 ( D 2 ) . Unitary equivalence, spectrum of the compression operator and core operator are studied in this paper.  相似文献   

13.
We construct a simply connected complete bounded mean curvature one surface in the hyperbolic 3-space ${\mathcal {H}^3}$ . Such a surface in ${\mathcal {H}^3}$ can be lifted as a complete bounded null curve in ${\rm {SL}(2,\mathbb {C})}$ . Using a transformation between null curves in ${\mathbb {C}^3}$ and null curves in ${\rm {SL}(2,\mathbb {C})}$ , we are able to produce the first examples of complete bounded null curves in ${\mathbb {C}^3}$ . As an application, we can show the existence of a complete bounded minimal surface in ${\mathbb {R}^3}$ whose conjugate minimal surface is also bounded. Moreover, we can show the existence of a complete bounded immersed complex submanifold in ${\mathbb {C}^2}$ .  相似文献   

14.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

15.
A. Jabbari 《Semigroup Forum》2012,85(1):160-168
In Jabbari and Namioka (Milan J. Math. 78:503?C522, 2010), the authors characterized the spectrum M(W) of the Weyl algebra W, i.e. the norm closure of the algebra generated by the family of functions $\{n\mapsto x^{n^{k}}; x\in\mathbb{T}, k\in\mathbb{N}\}$ , ( $\mathbb{T}$ the unit circle), with a closed subgroup of $E(\mathbb{T})^{\mathbb{N}}$ where $E(\mathbb{T})$ denotes the family of the endomorphisms of the multiplicative group $\mathbb{T}$ . But the size of M(W) in $E(\mathbb{T})^{\mathbb{N}}$ as well as the induced group operation were left as a problem. In this paper, we will give a solution to this problem.  相似文献   

16.
This paper concerns with a class of reaction-diffusion systems with triangular diffusion matrix on the unbounded domain ${\mathbb{R}^{n}}$ . The system with diagonal diffusion matrix has been studied by J. D. Avrin and F. Rothe in [4]. We prove two new results about uniform boundedness to solutions of such class of reaction-diffusion systems in ${BUC(\mathbb{R}^{n})}$ , the space of bounded uniformly continuous functions from ${\mathbb{R}^{n}}$ to ${\mathbb{R}}$ .  相似文献   

17.
Given a Lie group G with a bi-invariant metric and a compact Lie subgroup K, Bittencourt and Ripoll used the homogeneous structure of quotient spaces to define a Gauss map ${\mathcal{N}:M^{n}\rightarrow{\mathbb{S}}}$ on any hypersupersurface ${M^{n}\looparrowright G/K}$ , where ${{\mathbb{S}}}$ is the unit sphere of the Lie algebra of G. It is proved in Bittencourt and Ripoll (Pacific J Math 224:45–64, 2006) that M n having constant mean curvature (CMC) is equivalent to ${\mathcal{N}}$ being harmonic, a generalization of a Ruh–Vilms theorem for submanifolds in the Euclidean space. In particular, when n = 2, the induced quadratic differential ${\mathcal{Q}_{\mathcal{N}}:=(\mathcal{N}^{\ast}g)^{2,0}}$ is holomorphic on CMC surfaces of G/K. In this paper, we take ${G/K={\mathbb{S}}^{2}\times{\mathbb{R}}}$ and compare ${\mathcal{Q}_{\mathcal{N}}}$ with the Abresch–Rosenberg differential ${\mathcal{Q}}$ , also holomorphic for CMC surfaces. It is proved that ${\mathcal{Q}=\mathcal{Q}_{\mathcal{N}}}$ , after showing that ${\mathcal{N}}$ is the twisted normal given by (1.5) herein. Then we define the twisted normal for surfaces in ${{\mathbb{H}}^{2}\times{\mathbb{R}}}$ and prove that ${\mathcal{Q}=\mathcal{Q}_{\mathcal{N}}}$ as well. Within the unified model for the two product spaces, we compute the tension field of ${\mathcal{N}}$ and extend to surfaces in ${{\mathbb{H}}^{2}\times{\mathbb{R}}}$ the equivalence between the CMC property and the harmonicity of ${\mathcal{N}.}$   相似文献   

18.
19.
Let ${\mathbb{Q}^3}$ be the moduli space of oriented circles in the three dimensional unit sphere ${\mathbb{S}^3}$ . Given a natural complex structure such space becomes a three dimensional complex manifold, with a M?bius invariant Hermitian metric h of type (2, 1). Up to M?bius transformations, all geodesics with respect to the Lorentz metric g = Re(h) on ${\mathbb{Q}^3}$ are determined to form a one-parameter family of circles on a helicoid in a space form ${\mathbb{R}^3, \mathbb{H}^3}$ or ${\mathbb{S}^{3}}$ , resp. We show also that any two oriented circles in ${\mathbb{S}^3}$ are connected by countably infinitely many geodesics in ${\mathbb{Q}^3}$ .  相似文献   

20.
In this paper, we study surfaces in Lorentzian product spaces ${{\mathbb{M}^{2}(c) \times \mathbb{R}_1}}$ . We classify constant angle spacelike and timelike surfaces in ${{\mathbb{S}^{2} \times \mathbb{R}_1}}$ and ${{\mathbb{H}^{2} \times \mathbb{R}_1}}$ . Moreover, complete classifications of spacelike surfaces in ${{\mathbb{S}^{2} \times \mathbb{R}_1}}$ and ${{\mathbb{H}^{2} \times \mathbb{R}_1}}$ and timelike surfaces in ${{\mathbb{M}^{2}(c) \times \mathbb{R}_1}}$ with a canonical principal direction are obtained. Finally, a new characterization of the catenoid of the 3rd kind is established, as the only minimal timelike surface with a canonical principal direction in Minkowski 3–space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号