首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, the fractional-order Chen–Lee system was proven to exhibit chaos by the presence of a positive Lyapunov exponent. However, the existence of chaos in fractional-order Chen–Lee systems has never been theoretically proven in the literature. Moreover, synchronization of chaotic fractional-order systems was extensively studied through numerical simulations in some of the literature, but a theoretical analysis is still lacking. Therefore, we devoted ourselves to investigating the theoretical basis of chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen–Lee systems in this paper. Based on the stability theorems of fractional-order systems, the necessary conditions for the existence of chaos and the controllers for hybrid projective synchronization were derived. The numerical simulations show coincidence with the theoretical results.  相似文献   

2.
This work is concerned with projective synchronization of hyperchaotic Lü system and Liu system by add-order method. Different controllers are designed to projective-synchronize the two nonidentical chaotic systems, active control is used when parameters are known, while the adaptive control law and the parameter update rule are derived via adaptive control when parameters are uncertain. Moreover, the convergence rates of the scheme can be adjusted by changing the control coefficients. Finally, numerical simulations are also shown to verify the results.  相似文献   

3.
This paper studies the problem of the circuit implementation and the finite-time synchronization for the 4D (four-dimensional) Rabinovich hyperchaotic system. The electronic circuit of 4D hyperchaotic system is designed. It is rigorously proven that global finite-time synchronization can be achieved for hyperchaotic systems which have uncertain parameters.  相似文献   

4.
Generalized projective lag synchronization (GPLS) is characterized by the output of the drive system proportionally lagging behind the output of the response system. In this paper, GPLS between different hyperchaotic systems with uncertain parameters, i.e., GPLS between Lorenz and Lü hyperchaotic systems, and between Lorenz?CStenflo and Lorenz hyperchaotic systems, is studied by applying an adaptive control method. Based on Lyapunov stability theory, the adaptive controllers and corresponding parameter update rules are constructed to make the states of two diverse hyperchaotic systems asymptotically synchronize up to the desired scaling matrix and to estimate the uncertain parameters. Some numerical simulations are provided to show the effectiveness of our results.  相似文献   

5.
Projective synchronization of new hyperchaotic Newton–Leipnik system with fully unknown parameters is investigated in this paper. Based on Lyapunov stability theory, a new adaptive controller with parameter update law is designed to projective synchronize between two hyperchaotic systems asymptotically and globally. Basic bifurcation analysis of the new system is investigated by means of Lyapunov exponent spectrum and bifurcation diagrams. It is found that the new hyperchaotic system possesses two positive Lyapunov exponents within a wide range of parameters. Numerical simulations on the hyperchaotic Newton–Leipnik system are used to verify the theoretical results.  相似文献   

6.
Based on Rikitake system, a new chaotic system is discussed. Some basic dynamical properties, such as equilibrium points, Lyapunov exponents, fractal dimension, Poincaré map, bifurcation diagrams and chaotic dynamical behaviors of the new chaotic system are studied, either numerically or analytically. The obtained results show clearly that the system discussed is a new chaotic system. By utilizing the fractional calculus theory and computer simulations, it is found that chaos exists in the new fractional-order three-dimensional system with order less than 3. The lowest order to yield chaos in this system is 2.733. The results are validated by the existence of one positive Lyapunov exponent and some phase diagrams. Further, based on the stability theory of the fractional-order system, projective synchronization of the new fractional-order chaotic system through designing the suitable nonlinear controller is investigated. The proposed method is rather simple and need not compute the conditional Lyapunov exponents. Numerical results are performed to verify the effectiveness of the presented synchronization scheme.  相似文献   

7.
The adaptive synchronized problem of the four-dimensional (4D) Lü hyperchaotic system performed by Elabbasy et al. (Chaos Solitons Fractals 30:1133–1142, 2006) with uncertain parameters by applying the single control input is addressed in this article. Based on the Lyapunov theorem of stability, the single-input adaptive synchronization controllers associated with the adaptive update laws of system parameters are developed to make the states of two nearly identical 4D Lü hyperchaotic systems asymptotically synchronized. Numerical studies are presented to illustrate the effectiveness of the proposed chaotic synchronization schemes.  相似文献   

8.
This work is devoted to investigating the complete synchronization of two identical delay hyperchaotic Lü systems with different initial conditions, and a simple complete synchronization scheme only with a single linear input is proposed. Based on the Lyapunov stability theory, sufficient conditions of synchronization are obtained for both linear feedback and adaptive control approaches. The problem of adaptive synchronization between two nearly identical delay hyperchaotic Lü systems with unknown parameters is also studied. A?single input adaptive synchronization controller is proposed, and the adaptive parameter update laws are developed. Numerical simulation results are presented to demonstrate the effectiveness of the proposed chaos synchronization scheme.  相似文献   

9.
This paper introduces an observer-based approach to achieve projective synchronization in fractional-order chaotic systems using a scalar synchronizing signal. The proposed method, which enables a linear fractional error system to be obtained, exploits the Kalman decomposition and a proper stability criterion in order to stabilize the error dynamics at the origin. The approach combines three desirable features, that is, the theoretical foundation of the method, the adoption of a scalar synchronizing signal, and the exact analytical solution of the fractional error system written in terms of Mittag-Leffler function. Finally, the projective synchronization of the fractional-order hyperchaotic R?ssler systems is illustrated in detail.  相似文献   

10.
On the hyperchaotic complex Lü system   总被引:1,自引:0,他引:1  
The aim of this paper is to introduce the new hyperchaotic complex Lü system. This system has complex nonlinear behavior which is studied and investigated in this work. Numerically the range of parameter values of the system at which hyperchaotic attractors exist is calculated. This new system has a whole circle of equilibria and three isolated fixed points, while the real counterpart has only three isolated ones. The stability analysis of the trivial fixed point is studied. Its dynamics is more rich in the sense that our system exhibits both chaotic and hyperchaotic attractors, as well as periodic and quasi-periodic solutions and solutions that approach fixed points. The nonlinear control method based on Lyapunov function is used to synchronize the hyperchaotic attractors. The control of these attractors is studied. Different forms of hyperchaotic complex Lü systems are constructed using the state feedback controller and complex periodic forcing.  相似文献   

11.
A hyperchaotic system is often used to generate secure keys or carrier wave for secure communication and the realistic hyperchaotic circuit often is made of capacitor, nonlinear resistor unit and induction coil. Parameters are often fixed in these hyperchaotic circuits and the hyperchaotic property of the system can be estimated by using a scheme of synchronization and time series analysis. In this paper, a time-varying hyperchaotic system is proposed by introducing changeable electric power source into the circuit; the changeable electric power source is combined with induction coil or capacitor in series to generate changeable output signals to excite the system. The diagrams of improved circuit are illustrated and critical parameters in experimental circuits are presented; the Lyapunov exponent spectrum vs. external applied electric power source is calculated. It is confirmed that the improved circuit always holds two positive Lyapunov exponents when the external electric power source works, and the chaotic attractors are much too different from the original one; thus, a more changeable hyperchaotic system is constructed in experiment.  相似文献   

12.
13.
To overcome the shortcomings of extreme time-consuming in solving the Reynolds equation, two efficient calculation methods, based on the free boundary theory and variational principles for the unsteady nonlinear Reynolds equation in the condition of Reynolds boundary, are presented in the paper. By employing the two mentioned methods, the nonlinear dynamic forces as well as their Jacobians of the journal bearing can be calculated saving time but with the same accuracy. Of these two methods, the one is called a Ritz model which manipulates the cavitation region by simply introducing a parameter to match the free boundary condition and, as a result, a very simple approximate formulae of oil-film pressure is being obtained. The other one is a one-dimensional FEM method which reduces the two-dimensional variational inequality to the one-dimensional algebraic complementary equations, and then a direct method is being used to solve these complementary equations, without the need of iterations, and the free boundary condition can be automatically satisfied. Meanwhile, a new order reduction method is contributed to reduce the degrees of freedom of a complex rotor-bearing system. Thus the nonlinear behavior analysis of the rotor-bearing system can be studied time-sparingly. The results in the paper show the high efficiency of the two methods as well as the abundant nonlinear phenomenon of the system, compared with the results obtained by the usual numerical solution of the Reynolds equation.  相似文献   

14.
This paper presents a new four-dimensional autonomous system having complex hyperchaotic dynamics. Basic properties of this new system are analyzed, and the complex dynamical behaviors are investigated by dynamical analysis approaches, such as time series, Lyapunov exponents’ spectra, bifurcation diagram, phase portraits. Moreover, when this new system is hyperchaotic, its two positive Lyapunov exponents are much larger than those of hyperchaotic systems reported before, which implies the new system has strong hyperchaotic dynamics in itself. The Kaplan–Yorke dimension, Poincaré sections and the frequency spectra are also utilized to demonstrate the complexity of the hyperchaotic attractor. It is also observed that the system undergoes an intermittent transition from period directly to hyperchaos. The statistical analysis of the intermittency transition process reveals that the mean lifetime of laminar state between bursts obeys the power-law distribution. It is shown that in such four-dimensional continuous system, the occurrence of intermittency may indicate a transition from period to hyperchaos not only to chaos, which provides a possible route to hyperchaos. Besides, the local bifurcation in this system is analyzed and then a Hopf bifurcation is proved to occur when the appropriate bifurcation parameter passes the critical value. All the conditions of Hopf bifurcation are derived by applying center manifold theorem and Poincaré–Andronov–Hopf bifurcation theorem. Numerical simulation results show consistency with our theoretical analysis.  相似文献   

15.
16.
This paper investigates the phenomenon of chaos synchronization of two different chaotic complex systems of the Chen and Lü type via the methods of active control and global synchronization. In this regard, it generalizes earlier work on the synchronization of two identical oscillators in cases where the drive and response systems are different, the parameter space is larger, and the dimensionality increases due to the complexification of the dependent variables. The idea of chaos synchronization is to use the output of the drive system to control the response system so that the output of the response system converges to the output of the drive system as time increases. Lyapunov functions are derived to prove that the differences in the dynamics of the two systems converge to zero exponentially fast, explicit expressions are given for the control functions and numerical simulations are presented to illustrate the success of our chaos synchronization techniques. We also point out that the global synchronization method is better suited for synchronizing identical chaotic oscillators, as it has serious limitations when applied to the case where the drive and response systems are different.  相似文献   

17.
The problem of synchronizing a unified chaotic system in the presence of parameter variations, unstructured uncertainties, and external disturbances is addressed. To tackle such perturbations whose bounds may be unknown, two robust adaptive algorithms are proposed. The stability analysis is presented based on the Lyapunov stability theorem. Simulation results demonstrate the performance of the developed synchronization schemes.  相似文献   

18.
This paper investigates impulsive chaotic synchronization of discrete-time switched systems with state-dependent switching strategy. The parameter-dependent Lyapunov function (PDLF) technique is used to establish stability criteria for a class of switched systems consisting of both stable and unstable subsystems. With these criteria, sufficient conditions are given to achieve observer-based impulsive chaotic synchronization. Examples are presented to illustrate the criteria.  相似文献   

19.
In this paper the global response characteristics of a piecewise smooth dynamical system with contact, which is specifically used to describe the rotor/stator rubbing systems, is studied analytically. A method to derive the global response characteristics of the model is proposed by studying each piece of the equations corresponding to different phases of the rotor motion, i.e., the phase without rubbing, the phase with rubbing and the phase of self-excited backward whirl. After solving the typical responses in each phase and deriving the corresponding existence boundaries in the parameter space, an overall picture of the global response characteristics of the model is obtained. As is shown, five types of the coexistences of the different rotor responses and deep insights into the interactive effect of parameters on the dynamic behavior of the model are gained.  相似文献   

20.
The problem of reliable impulsive lag synchronization for a class of nonlinear discrete chaotic systems is investigated in this paper. Firstly a reliable impulsive controller is designed by the impulsive control theory. Then, some sufficient conditions for reliable impulsive lag synchronization between the drive system and the response system are obtained. Numerical simulations are given to show the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号