首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yttrium oxide (Y2O3) doped with Dy3+ & Eu3+ nanoparticle has been synthesized by solution combustion method. The formation of the compounds has been checked by X-ray diffraction method. The crystallite/particle size has been measured using Scherrer formula as well as by transmission electron microscopy which show that the size of the particles are in the nanorange. The frequency and temperature dependent variation of impedance Z*, dielectric constant (ε′), dielectric loss (ε″) and AC conductivity (σ) of Y2O3: Dy3+ & Eu3+ nanoparticles were also measured. The real and imaginary part of complex impedance makes semicircle in the complex plane. The center of semicircle arc is found to be shifted toward higher value of real part of impedance with increasing temperature. This indicates that the conductivity of the material increases with the increase in temperature. Cole–Cole plots demonstrate that the dielectric relaxation process occurs in the material. The AC conductivity (σ AC) increases with the increase in temperature within the frequency range of 103–107 Hz confirming the hopping of the electrons in the conduction process. The value of impedance decreases sharply with increasing frequency and attains minimum value after 105 Hz at all temperatures.  相似文献   

2.
Sol-gel derived Mg doped tin oxide (Sn1−xMgxO2) nanocrystals were synthesized with x ranging between 0.5 and 7 at. %. Characteristic single phase tetragonal structure of pure and doped samples was obtained and doping saturation was inferred by X-ray diffraction analysis. Structural, morphological and phase informations were obtained by high resolution transmission electron microscope, field emission scanning electron microscope and X-ray photoelectron spectroscopy respectively whereas bonding information was obtained from Fourier transformed infrared spectroscopy. Measurement of different electrical parameters with frequency (200 Hz-105 Hz) has been carried out at room temperature. Ultrahigh dielectric constant and metallic AC conductivity were observed for undoped tin oxide and the profiles reflected highly sensitive changes in the atomic and interfacial polarizability generated by doping concentrations. Relaxation spectra of tangent loss of any sample did not show any loss peak within the frequency range. Both the grain and grain boundary contributions are observed to increase as the doping concentration increased. Results of first principle calculation based on density functional theory indicated effective Fermi level (EF) suppression due to Mg doping which is responsible for the experimentally observed conductivity variation. AC conductivity was found to depend strongly on the doping concentration and the defect chemistry of the compound. Mg doped SnO2 may find applications as a low loss dielectric and high density energy storage material.  相似文献   

3.
《Current Applied Physics》2020,20(7):866-870
(Li + Nb) co-doped (Li + Nb)xFe2-xO3 (with x = 0.0005, 0.005, 0.05, and 0.1) ceramics were prepared by sol-gel method. Their structural, dielectric, humidity, and magnetic properties were investigated. Colossal permittivity (~104) was approached or achieved in all doped samples even with a very small doping level of x = 0.0005. The colossal permittivity behavior is composed of two dielectric relaxations with the low-temperature one being a polaron relaxation due to electrons hopping between Fe3+ and Fe4+ ions and the high-temperature one being a Maxwell-Wagner relaxation caused by humidity-sensing properties.  相似文献   

4.
The Cu1?xAxFe2O4 (A = Zn, Mg; x = 0.0, 0.5) ferrites were successfully synthesized by chemical co-precipitation method. X-ray diffraction and Raman spectroscopy reveals that all the ferrite samples are in single-phase with tetragonal structure for CFO and cubic spinel structure for CZFO and CMFO samples. SEM micrograph shows the variation of grain size with Zn and Mg doping in parent CFO sample. Frequency dependent dielectric response confirms the dielectric polarization and electrical conduction mechanism in the present series with a maximum value of dielectric constant and loss tangent for CZFO sample. The anomaly ~493 K in temperature dependent dielectric constant and dielectric loss is assigned to tetragonal to cubic phase transition in CFO sample. The magnetic measurement explored that the saturation value (Ms) is maximum for CZFO as compared to CFO and CMFO ferrites samples.  相似文献   

5.
Cobalt ferrite nanoparticles having the chemical formula CoFe2−2xZrxZnxO4 with x ranging from 0.0 to 0.4 were prepared by chemical co-precipitation method. The powder X-ray diffraction pattern confirms the spinel structure for the prepared compound. The particle size was calculated from the most intense peak (3 1 1) using Scherrer formula. The particle size of the samples was found within the range of 12–23 nm for all the compositions. The magnetic and electrical properties of these materials have been studied as a function of temperature. Activation energy and drift mobility have been calculated from the DC electrical resistivity measurements. Dielectric properties such as dielectric constant and dielectric loss tangent were measured at room temperature in the frequency range 100 Hz–1 MHz.  相似文献   

6.
In order to improve the high-frequency electromagnetic properties of Z-type hexaferrites such as high cut-off frequency and low dielectric constant, Y2O3 was introduced. The influence of Y2O3 additive on the phase composition, densification, microstructural and electromagnetic properties of the ceramics with composition of Ba3(Co0.4Zn0.6)2YxFe24−xO41 (x=0−1) was investigated. The results show that as the amount of Y2O3 additive increased, the major phase changed to Z-phase; simultaneously, a small amount of garnet phase appeared. With increasing Y2O3 content, the garnet phase separated out on grain boundaries as a secondary phase restraining grain growth. When x was varied from 0 to 1, the dielectric constant decreased and the ferroelectric resonance peak shifted toward a higher frequency. Meanwhile, the initial permeability increased at first, and then decreased with further increasing x, which could be mainly attributed to the change of phase composition and sintering density. With increasing Y2O3 content, the minimum reflection point of the samples shifted toward a higher frequency.  相似文献   

7.
Local coordination structure around Yttrium ions in CeO2–Y2O3 binary and [(CeO2)x(ZrO2)1?x]0.8(YO1.5)0.2 (x = 0.0 ~ 1.0) ternary system has been investigated by 89Y MAS-NMR. NMR spectra are found to be consisted of multiple peaks that can be assigned to 6-, 7- and 8-oxygen coordinated Yttrium ions. Compositional dependence of the spectrum was observed and compared with the previous results for ZrO2–Y2O3 binary system. The present investigation suggested the degree of localization of the oxygen vacancy around the cation is in the order of Zr4+ > Y3+ > Ce4+. The degree of the oxygen vacancy preference for each cation was quantitatively determined for CeO2–ZrO2–Y2O3 ternary system the first time.  相似文献   

8.
《Current Applied Physics》2009,9(5):1072-1078
Electrical conductivity and dielectric measurements have been investigated for four different average grain sizes ranging from 3 to 7 nm of nanocrystalline Ni0.2Cd0.3Fe2.5−xAlxO4 (0.0  x  0.5) ferrites. The impedance spectroscopy technique has been used to study the effect of grain and grain boundary on the electrical properties of the Al doped Ni–Cd ferrites. The analysis of data shows only one semi-circle corresponding to the grain boundary volume suggesting that the conduction mechanism takes place predominantly through grain boundary volume in the studied samples. The variation of impedance properties with temperature and composition has been studied in the frequency range of 120 Hz–5 MHz between the temperatures 300–473 K. The hopping of electrons between Fe3+ and Fe2+ as well as hole hopping between Ni3+ and Ni2+ ions at octahedral sites are found to be responsible for conduction mechanism. The dielectric constant and loss tangent (tan δ) are found to decrease with increasing frequency, whereas they increase with increasing temperature. The dielectric constant shows an anomalous behavior at selected frequencies, while the temperature increases, which is expected due to the generation of more electrons and holes as the temperature increases. The behavior has been explained in the light of Rezlescu model.  相似文献   

9.
Yttrium oxide is an important laser and infrared optical material. The structural, vibrational and dielectric properties of Y 2O3 are calculated from first principles using the plane-wave pseudopotential method. The dielectric permittivity tensors, infrared-active phonon frequencies at the Brillouin zone center and the LO/TO splitting are reported within the framework of density functional perturbation theory. Contributions to the static dielectric constant from each infrared-active mode are presented. It is shown that Y 2O3 has an electronic dielectric constant larger than that of the lattice contributions. Dielectric, refractive index, extinction coefficient and infrared reflectance spectra of Y 2O3 are given, and the figures suggest that Y 2O3 presents good transmission properties in the spectrum range above 800 cm?1 or below 400 cm?1.  相似文献   

10.
Polymer electrolyte films of (PVA+15 wt% LiClO4)+x wt% Ionic liquid (IL) 1-ethyl-3-methylimidazolium ethylsulfate [EMIM][EtSO4] (x=0, 5, 10, 15) were prepared by solution cast technique. These films were characterized using TGA, DSC, XRD and ac impedance spectroscopic techniques. XRD result shows that amorphosity increases as the amount of the IL in PVA+salt (LiClO4) is increased. DSC results confirm the same (except (PVA+15 wt% LiClO4)+10 wt% IL). The dielectric and conductivity measurements were carried out on these films as a function of frequency and temperature. The addition of IL significantly improved the ionic conductivity of polymer electrolytes. Relaxation frequency vs. temperature plot for (PVA+15 wt% LiClO4)+x wt% IL were found to follow an Arrhenius nature. The dielectric behavior was analyzed using real and imaginary parts of dielectric constant, dielectric loss tangent (tan δ) and electric modulus (M′ and M″).  相似文献   

11.
Polycrystalline soft ferrite samples with general formula ZnNdxFe2−xO4 (where x=0, 0.01, 0.02 and 0.03) were synthesized by oxalate co-precipitation method. The samples were characterized by XRD and SEM techniques. The single phase cubic spinel structure of all the samples was confirmed by XRD. The lattice constant and grain size of the samples are found to decrease with increase in Nd3+ content. Room temperature DC resistivity of the Nd3+ substituted zinc ferrites is 102 times higher than that of zinc ferrite. The dielectric constant (ε′) and dielectric loss (tan δ) of all the samples were measured in the frequency range 20 Hz-1 MHz. The dielectric behaviour is attributed to the Maxwell-Wagner type interfacial polarization. The dielectric loss of the samples is found to decrease with increase in Nd3+ content. High resistivity and low dielectric loss makes these ferrites particularly suitable for high frequency applications.  相似文献   

12.
Mn-Zn ferrites doped with different contents of Y3+ ions were prepared by conventional two-step synthesis method. The microstructure and electromagnetic properties of the as-prepared Mn-Zn ferrites were investigated. It was found that all the samples consisted of ferrite phases of typical spinel cubic structure, and when Y3+ ion content was upto 1.5 mol%, yttriumirongarnet (Y3Fe5O12) phase with garnet structure was detected. With increasing doping content of Y3+ ions, the lattice constant and grain size increased, and after an increase to its maximum value, the sample apparent and relative densities dropped down. Through the analysis of magnetic properties, it was revealed that the saturation magnetization, and both the real and imaginary parts of permeability of the as-prepared samples raised with increasing doping content of Y3+ ions but decreased with more Y3+ ions, while their coercivity showed an opposite change trend; and the Curie temperature increased monotonously. The measurement of dielectric properties indicated that the dielectric constant of the doped Mn-Zn ferrites presented a rise with increasing Y3+ ion content, and dropped down gradually when more Y3+ ions were doped, while the dielectric loss tangent would decrease with Y3+ content upto 1.5 mol%, but after that, it increased.  相似文献   

13.
Nano-phased doped Mn–Zn ferrites, viz., Mn0.5−x/2Zn0.5−x/2SbXFe2O4 for x=0 to 0.3 (in steps of 0.05) prepared by hydrothermal method are characterized by X-ray diffraction, Infrared and scanning electron microscopy. XRD and SEM infer the growth of nano-crystalline cubic and hematite (α-Fe2O3) phase structures. IR reveals the ferrite phase abundance and metal ion replacement with dopant. Decreasing trend of lattice constant with dopant reflects the preferential replacement of Fe3+ions by Sb5+ion. Doping is found to cause for the decrease (i.e., 46–14 nm) of grain size. An overall trend of decreasing saturation magnetization is observed with doping. Low magnetization is attributed to the diamagnetic nature of dopant, abundance of hematite (α-Fe2O3) phase, non-stoichiometry and low temperature (800 °C) sintering conditions. Increasing Yafet–Kittel angle reflects surface spin canting to pronounce lower Ms. Lower coercivity is observed for x≤0.1, while a large Hc results for higher concentrations. High ac resistivity (~106 ohm-cm) and low dielectric loss factor (tan δ~10−2–10−3) are witnessed. Resistivity is explained on the base of a transformation in the Metal Cation-to-Oxide anion bond configuration and blockade of conductivity path. Retarded hopping (between adjacent B-sites) of carriers across the grain boundaries is addressed. Relatively higher resistivity and low dielectric loss in Sbdoped Mn–Zn ferrite systems pronounce their utility in high frequency applications.  相似文献   

14.
Nanocrystalline manganese-substituted lithium ferrites viz. Li0.5Fe2.5−xMnxO4 (2.5≤x≥0) were prepared by sol-gel autocombustion method. X-ray diffraction analysis confirmed that as the concentration of manganese increases the cubic phase changes to the tetragonal phase. The variation of saturation magnetization was studied as a function of manganese content. All the compositions indicate that they are ferrimagnetic in nature. The dielectric constant, dielectric loss tangent and ac conductivity of all samples were measured at room temperature as a function of frequency. These parameters decrease with increase in frequency for all of the samples. The substitution of manganese plays an important role in changing the structural and magnetic properties of these ferrites. The compositional variation of dielectric constant and d.c. resistivity shows an inverse trend of variation with each other.  相似文献   

15.
Nickel-aluminum ferrite system NiAlxFe2−xO4 has been synthesized by wet chemical co-precipitation method. The samples were studied by means of X-ray diffraction, d.c. electrical resistivity, a.c. electrical resistivity, a.c. conductivity and switching properties. The XRD patterns confirm the cubic spinel structure for all the synthesized samples. The crystallite size calculated from XRD data which confirm the nano-size dimension of the prepared samples. Electrical properties such as a.c. and d.c. resistivities as function of temperature were studied for various Al substitution in nickel ferrite. The dielectric constant and dielectric loss tangent were also studied as a function of frequency. The dielectric constant follows the Maxwell-Wagner interfacial polarization. A.C. conductivity increases with increase in applied frequency. The d.c. resistivity decreases as temperature increases, which indicate that the sample have semi-conducting nature. Verwey hoping mechanism explains the observed variation in resistivity. The activation energy is derived from the temperature variation of resistivity. Electrical switching properties were studied as I-V measurements. The current controlled negative resistance type switching is observed in all the samples. The Al substitution in nickel ferrite decreases the required switching field.  相似文献   

16.
We propose an exploding wire technique based facile approach to prepare Fe2O3 nanoparticles in ambient conditions. TG-DSC analysis of the prepared precursor (Fe(OH)3) nanoparticles were done. The phase, lattice parameter and the average crystallite size were evaluated through X-ray diffraction analysis. The morphology of prepared nanoparticles was studied by scanning electron microscopy and Transmission electron microscope. The functional group formation of Fe2O3 nanoparticles and intrinsic stretching vibration bands of Fe–O were estimated through FTIR analysis. The direct band gap of Fe2O3 nanoparticles occurring in conjunction with indirect band gaps was established via Tauc plot. The magnetic parameters were studied through Mössbauer spectroscopy, ESR, M-H and M-T plot analysis. The attributes of dielectric behaviour like dielectric constant (ε′), loss tangent (tan δ), dielectric loss (ε″) and alternating current (AC) conductivity (σAC) were measured at various temperatures in the frequency range of 10 Hz-106 KHz.  相似文献   

17.
Samples with the chemical formula Cu1−xZnxFe2O4 (x=0.2, 0.4, 0.6, 0.8 and 1) were prepared by the standard ceramic method. The dielectric constant and dielectric loss tangent were studied as a function of vacancy jump rate. The results show that the dielectric constant and dielectric loss tangent decrease with increasing vacancy jump rate. In addition, the electron jump length in the octahedral sites was studied as a function of zinc concentration. The increase in jump length with Zn concentration has been attributed to the substitution of Fe+3 for Zn2+ at the A-sites, which increases the B-B interaction. The increase of diffusion coefficient with increasing Zn concentration was reinforced by the increase of jump rate.  相似文献   

18.
Process compatible high-k dielectric thin films are one of the key solutions to develop high performance metal–insulator–metal (MIM) structures for future microelectronic devices. Engineered cerium–aluminate (CexAl2–xO3) thin films were deposited on titanium nitride metal electrodes by electron-beam co-evaporation of ceria and alumina in a molecular beam deposition chamber. X-ray photoelectron spectroscopy clearly reveals that Ce cations can be stabilized in the 3+ valence state in CexAl2–xO3 up to x = 0.7 by accommodation in the alumina host matrix. Higher Ce content was observed to result in cerium dioxide segregation in cerium aluminate matrix, probably due to the chemical tendency of Ce cations to exist rather in the 4+ than in the 3+ state. Electrical characterization of the X-ray amorphous Ce0.7Al1.3O3 films reveals a dielectric constant value of about 11 and leakage current lower than 10?4 A/cm2. No parasitic low-k interface formation between the high-k Ce0.7Al1.3O3 film and the TiN metal electrode is detected.  相似文献   

19.
Chemical interactions between the Ba2YCu3O6+x superconductor and the LaMnO3 buffer layers employed in coated conductors have been investigated experimentally by determining the phases formed in the Ba2YCu3O6+x–LaMnO3 system. The Ba2YCu3O6+x–LaMnO3 join within the BaO–(Y2O3–La2O3)–MnO2–CuOx multi-component system is non-binary. At 810 °C (pO2 = 100 Pa) and at 950 °C in purified air, four phases are consistently present along the join, namely, Ba2?x(La1+x?yYy)Cu3O6+z, Ba(Y2?xLax)CuO5, (La1?xYx)MnO3, (La,Y)Mn2O5. The crystal chemistry and crystallography of Ba(Y2?xLax)CuO5 and (La1?xYx)Mn2O5 were studied using the X-ray Rietveld refinement technique. The Y-rich and La-rich solid solution limits for Ba(Y2?xLax)CuO5 are Ba(Y1.8La0.2)CuO5 and Ba(Y0.1La1.9)CuO5, respectively. The structure of Ba(Y1.8La0.2)CuO5 is Pnma (No. 62), a = 12.2161(5) Å, b = 5.6690(2) Å, c = 7.1468(3) Å, V = 494.94(4) Å3, and Dx = 6.29 g cm?3. YMn2O5 and LaMn2O5 do not form solid solution at 810 °C (pO2 = 100 Pa) or at 950 °C (in air). The structure of YMn2O5 was confirmed to be Pbam (No. 55), a = 7.27832(14) Å, b = 8.46707(14) Å, c = 5.66495(10) Å, and V = 349.108(14) Å3. A reference X-ray pattern was prepared for YMn2O5.  相似文献   

20.
Among Aurivillius layer-structured materials, CaBi2Nb2O9 is a best potential candidate for ultrahigh-temperature applications because of its highest Curie temperature of about 940 °C. In this paper, (1-x)CaBi2Nb2O9-xBaZr0.2Ti0.8O3 composite ceramics were prepared by conventional solid-state sintering method. The dielectric results show that the introduction of BaZr0.2Ti0.8O3 not only increases the permittivity of the material, but also reduces its dielectric loss. The optimum electrical properties were obtained in the x = 0.01 sample with piezoelectric coefficient (d33) of 15.1 pC/N and high ferroelectric remnant polarization (Pr) of 9.9 μC/cm2. Furthermore, the composite samples show good thermal depoling performance, the d33 of the x = 0.01 sample is 13.8 pC/N, which is about 91% of the initial value after depoling at 800 °C. Therefore, (1-x)CaBi2Nb2O9-xBaZr0.2Ti0.8O3 is one of the candidates for high temperature piezoelectric materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号