首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functionally graded (FG) composites consisting of polycaprolactone (PCL) and beta-tricalcium phosphate (β-TCP) particles were fabricated with a multilayered structure using a melt plotter with a two-heating-barrel system. Using this process, the concentration of β-TCP particles varied in each layered strut. Scanning electron microscopy (SEM) and energy dispersive spectroscopy mapping of calcium on the fabricated scaffolds indicated that the β-TCP particles were well distributed in each PCL strut, according to conceptual design. By incorporating β-TCP, the FG-PCL/β-TCP scaffolds had meaningful increases in water absorption (30 % increase) and showed good mechanical properties, although the mechanical properties are slightly low compared to pure PCL/β-TCP composite. We performed biological assessments to evaluate the capability of these FG scaffolds to act as a biomaterial for bone tissue regeneration with osteoblast-like cells (MG63). SEM images of cell-seeded FG scaffolds showed that the concentrated β-TCP struts were affected as good cell attachment/proliferation sites. Additionally, calcium deposition on the FG scaffolds was higher than that of normal scaffolds after 14 days. In particular, we observed high levels of mineralization in the highly concentrated β-TCP struts in the FG scaffolds. Based on these results, we believe that the FG scaffolds having various spatially designed structures with graded properties will be widely applicable for hard tissue engineering applications.  相似文献   

2.
Abstract

Polymeric/ceramic composite scaffolds that are biocompatible and biodegradable are widely used for tissue engineering applications. In this work a series of poly(L-lactide-co-glycolide-co-ε-caprolactone)/nano-biaoactive glass-nano-β-tricalcium phosphate composite scaffolds were successfully fabricated and the influences of the inorganic content and freezing temperature on the physical properties were studied. The composite scaffolds with various inorganic contents showed an interconnected pore structure with irregular shapes. The composite scaffolds had a porosity that was reduced with increasing inorganic content and decreasing freezing temperature. The incorporation of inorganic fillers and decreasing freezing temperature improved the mechanical properties of the hybrid scaffolds. By appropriate control of these two factors (10.0?wt% content of NBAG and β-TCP with freezing at ?30?°C) a suitable composite scaffold was prepared as a potential bone tissue engineering implant.  相似文献   

3.
Vacuum freeze-drying was used to prepare chitosan-gelatin (CG) scaffolds from hydrogels, with glutaraldehyde (GA) used as a crosslinker. The effects of the changes in volume ratios of the 2?wt% CG and GA solutions on scaffold performance were studied. The ratio of chitosan to gelatin solution volumes, vr(C/G), was adjusted to 1/2 or 1/1, with the 0.25?wt% GA volume at 3, 6, or 8% of the CG/GA volume. Six groups of CG scaffolds were fabricated and the scaffolds performance compared. After the cells were incubated for 4?days, hematoxylin eosin (HE) staining was used to observe the spreading of human skin keratinocyte (HaCaT) cells on these scaffolds, with the MTT method also used to detect the cells proliferation. The inhibition zone method was used on cells cultures to determine the antibacterial properties of the scaffolds against S. aureus and E. coli. Scaffolds were also examined for degradation in lysozyme and their compression properties were tested after degradation. The results showed that the HaCaT cells grew well on these scaffolds and proliferated significantly, indicating that these scaffolds possessed good cytocompatibility. With increased chitosan volume, the antibacterial properties of the scaffolds against S. aureus increased, however, there was no significant change in the antibacterial properties toward E. coli. Increased volumes of chitosan and GA decreased the scaffolds degradation rates and improved the elastic compressive moduli of the scaffolds after degradation. The scaffolds in the vr(C/G) = 1/1, 8% GA group have potential application prospects in the field of skin regeneration.  相似文献   

4.
Abstract

The research described here probed the thermodynamics and kinetics of Vitamin B12 release from two types of polymeric gel scaffolds for targeted drug delivery applications. The polymeric gel scaffolds were successfully prepared from sodium alginate and polyvinyl acetate (PVA) using crosslinking and casting mechanisms, respectively. Vitamin B12 was effectively blended into the polymeric gel scaffolds during their synthesis processes. The release of Vitamin B12 from the polymeric gel scaffolds was characterized by immersing the scaffolds in a brine solution at various temperatures (25?°C, 32?°C and 37?°C) and, simultaneously, the transient concentrations were measured using a UV visible spectrophotometer. The sodium alginate gel scaffolds exhibited a more rapid release of Vitamin B12 as compared to the PVA gel scaffolds. The Vitamin B12 release kinetics from the alginate and PVA scaffolds were characterized by fitting the experimental data with various diffusion kinetic models. The Vitamin B12 release from the alginate gel scaffolds followed the Peppas-Sahlin model, whereas releases from the PVA gel scaffolds were fitted to the Hopfenberg model. The diffusion coefficients for the alginate scaffolds with respect to the three temperatures were found to be 15.72?m2/s, 17.17?m2/s and 18.58?m2/s respectively whereas the diffusion coefficients for the PVA scaffolds with respect to the three temperatures were found to be 0.23?m2/s, 0.29?m2/s and 0.32?m2/s respectively. The activation energies (Ea) for the two types of polymeric scaffolds were calculated using the Stannett equation and found to be 10.38?kJ.mol?1 and 20.47?kJ.mol?1 for the alginate and PVA scaffolds, respectively, for all three temperatures.  相似文献   

5.
聂欣宇  马勇  郭霞生  屠娟  章东 《声学学报》2016,41(5):731-738
低强度脉冲超声(LIPUS)激发的声微流场所产生的剪切应力可作用于细胞膜表面,从而显著增强细胞膜的通透性。构建了三维藻酸钙凝胶支架培养系统,来模拟有利于细胞生长的营养供给和新陈代谢体内微环境;基于扫描电子显微镜、体内荧光图像和激光共聚焦图像观测技术,对LIPUS增强三维藻酸钙凝胶支架材料的孔隙率和通透性的作用机制和参数相关性进行了系统的研究。结果表明,三维藻酸钙凝胶支架材料的孔隙率和通透性可随着LIPUS的驱动声压的升高而显著增强。此外,通过对三维支架材料内的细胞增殖情况分析,发现在适当的LIPUS驱动声压(如P-=0.055 MPa)下,HeLa细胞在LIPUS作用下的三维藻酸钙凝胶支架材料中可获得更高的增殖率。   相似文献   

6.
Combination of natural biodegradable polymer with a synthetic polymer offers excellent properties for the support in drug delivery system. For this purpose, biodegradable conductive nanoparticle polypyrrole based on chitosan (PPC) has been prepared via oxidative polymerization of pyrrole in presence of chitosan using FeCl3 as oxidant in acidic medium and used as a carrier for 1,2,4‐triazoles. The resultant nanoparticles were characterized by X‐ray diffraction, Fourier transform infrared analysis, transmission electron microscopy, scanning electron microscopy, and thermal gravimetric analysis. The results indicate that spherical nanoparticle of average diameter 52 ± 8 nm was successfully prepared. The spherical particles were composed of dark sphere surrounded by grey shell. A circumferential dark ring is observed in the shell after loading 1,2,4‐triazoles into PPC nanoparticles. The loaded triazoles were released almost linearly against time in a sustained fashion into different pH media. The mechanism of triazoles release was determined using different kinetics equations. The antibacterial activities against the gram‐negative and gram‐positive bacteria were examined. Furthermore, the antitumor activity of PPC nanoparticles loaded 1,2,4‐triazoles was also examined against Ehrlich ascites carcinoma cells and breast cancer cell line (MCF7). Polypyrrole chitosan loaded nanoparticles exhibited higher antitumor activity than 1,2,4‐triazoles.  相似文献   

7.
Abstract

Electrospinning, as an effective method for preparation of scaffolds for cell growth templates, has attracted great attention. In this study electrospinning was used to prepare poly (vinyl alcohol) (PVA)/chitosan scaffolds for bone tissue engineering. In order to improve the bioactivity and mechanical properties of the fibrous scaffolds, 0.5, 1 and 2?wt% akermanite, a calcium silicate based bioceramic, was added to the electrospinning solution. The morphology of the electrospun scaffolds was observed by using field emission-scanning electron microscopy and their mechanical strengths were analyzed by tension tests. The results showed that the formed scaffolds consisted of fibers with less than 100?nm diameter. In the case of the composite containing 1?wt% akermanite, the fibers were more homogeneous and no beads were formed during electrospinning, while in the composite containing 2?wt% akermanite a considerable number of beads were formed which we attribute to an improper viscosity of the electrospinning solution. Among the different compositions, the composite containing 1?wt% akermanite showed higher ultimate tensile strength (10.6?MPa) and fracture strain (9%). These values were increased by crosslinking the scaffold by reaction with glutaraldehyde, up to 13?MPa and 9.4%, respectively.  相似文献   

8.
Polyplexes between a double-stranded Salmon DNA and hyperbranched poly(ethyleneimine) (PEI) as well as a maltosylated PEI-Mal were incorporated into a gelatin/chitosan hydrogel scaffold. Calorimetric experiments of the polyplexes show a decrease of the melting temperature in presence of PEI and a peak splitting in presence of PEI-Mal, which can be interpreted to a partial compaction of the DNA strands in presence of PEI-Mal. When the polyplexes are incorporated into a gelatin/chitosan scaffold in the swollen state, the DNA melting peaks at 90 and 93 °C, respectively, indicate in both cases the release of the DNA at the surface of the hydrogel scaffold in a more compact form. Specific interactions between the PEI-Mal shell and gelatin are responsible for the tuning of the release properties in presence of the maltose units in the hyperbranched PEI.  相似文献   

9.
When sectioning a 3D porous scaffold made of a soft elastomeric material embedded in paraffin medium, it is not easy to obtain a section because of the different mechanical properties of the paraffin and tissue/scaffold. We describe a new embedding material for histological analysis of various biomaterials that is composed of paraffin and ethylene vinyl acetate (EVA) resin (0, 3, 7, and 13 wt.%). 3D porous poly(l-lactide--caprolactone) (PLCL) and chitosan scaffolds were fabricated to test the sectioning efficiency of the paraffin/EVA embedding material. The new embedding material was characterized by rheological analysis and solvent solubility testing in xylene and n-hexane. The hydrophilicity of the new material was assessed by contact angle measurement and its surface roughness was measured using AFM analysis. The staining efficiency of sections embedded in a paraffin/EVA mixture was determined by eosin staining of the chitosan scaffold and chitosan/collagen hybrid scaffold using a fluorescently labeled collagen. Section roughness decreased with increasing EVA content. The softening temperature of the paraffin/EVA mixture was similar to that of paraffin (50–60 °C by rheometer). The paraffin/EVA mixture dissolved completely in xylene after 30 min at 50 °C, and after 30 min in n-hexane at 60 °C. Therefore, the new embedding medium can be used for histological analysis of various biomaterials and natural tissues.  相似文献   

10.
Polyhedral cobalt microcrystals assembled on hollow glass spheres are successfully synthesized by a facile and easy-control hydrothermal reduction process, and thus hierarchical glass/cobalt core/shell composite hollow spheres are fabricated with low-density (0.96 g cm−3). By properly tuning the process conditions and the component of the reaction solution, a series of composite spheres with gradient in morphologies of the shell layer can be prepared. Based on a series of contrast experiments, the probable formation mechanism of the core/shell hierarchical structures is proposed. The magnetic properties of the products are studied and the results demonstrate that the composite spheres present ferromagnetic properties related to the special shell morphologies. The composite hollow spheres thus obtained may have some promising applications in the fields of low-density magnetic materials, conduction, and catalysis, etc. This work provides an additional strategy to prepared core/shell composite spheres with tailored shell morphology and magnetic properties.  相似文献   

11.
Metal nanoshells, which are nanoparticles consisting of a dielectric core surrounded by a metal shell, have an optical response dictated by the plasmon resonance. This optical resonance leads to large extinction cross-sections, which are typically several times the physical cross-section of the particles. The wavelength at which the resonance occurs depends on the core and shell sizes, allowing nanoshells to be tailored for applications. In this paper, we demonstrate how incorporating nanoshells transforms a thermoresponsivepolymer into a photothermally responsive nanoshell–polymer composite. When the thermoresponsive polymer, co-N-isopropylacrylamide-acrylamide (NIPAAm-co-AAm), is heated, the polymer undergoes a reversible decrease in volume. Pristine NIPAAm-co-AAm does not inherently absorb visible or near infrared light. However, by incorporating metal nanoshell particles with a resonance that has been placed at 832 nm into the NIPAAm-co-Aam, nanoshell–polymer composite hydrogels are fabricated. When the composite is illuminated with a diode laser at 832 nm, the nanoshells absorb light and convert it to heat. This induces a reversible and repeatable light-driven collapse of the composite with a weight change of 90% after illumination at 1.8 Wcm-2. Received: 18 July 2001 / Published online: 10 October 2001  相似文献   

12.
A system and a method were developed for continuous production of glass-coated microwires with controllable glass thickness and metallic core diameter. Fe-Si-Al flakes were fabricated by planetary ball milling using ethanol as a dispersant. A composite noise suppression sheet was prepared with glass-coated microwires combined with Fe-Si-Al flakes. The characteristics of the conduction noise suppression of the composite sheet were evaluated on a microstrip line in gigahertz frequencies. The conduction electromagnetic noise was effectively suppressed by the composite sheet in broad-band frequency region; the power loss is greater than 70% in the frequency range from 0.7 to 8.5 GHz.  相似文献   

13.
This work studied the effects of matrix powder and sintering temperature on the microstructure and mechanical properties of in situ formed Ti–Al3Ti core–shell-structured particle-reinforced pure Al-based composites. It has been shown that both factors have significant effects on the morphology of the reinforcements and densification behaviour of the composites. Due to the strong interfacial bonding and the limitation of the crack propagation in the intermetallic shell during deformation by soft Al matrix and Ti core, the composite fabricated using fine spherical-shaped Al powder and sintered at 570 °C for 5 h has the optimal combination of the overall mechanical properties. The study provides a direction for the optimum combination of high strength and ductility of the composites by adjusting the fabrication parameters.  相似文献   

14.
《Current Applied Physics》2019,19(11):1204-1210
In this work, doxorubicin (DOX) was intercalated into layered nanohydroxyapatite (LHAp). The drug loaded LHAp (DOX@LHAp) was then mixed with poly(lactic-co-glycolic acid) (PLGA) and electrospun to yield DOX@LHAp/PLGA composite scaffolds. As control, needle-like nanohydroxyapatite (nHAp) was also used to make an DOX@nHAp/PLGA composite scaffold and bare DOX was used to fabricate DOX/PLGA scaffold. The morphology, release behavior of DOX, and capability to inhibit cancer cells were assessed. The addition of DOX-loaded nHAp to PLGA causes a slight decrease in the average fiber diameter of DOX@LHAp/PLGA as compared to PLGA. The in vitro drug release tests reveal a much faster release of DOX from DOX/PLGA than DOX@LHAp/PLGA. Moreover, DOX@LHAp/PLGA displays a more sustainable release over DOX@nHAp/PLGA due to the storage of DOX in the gallery of LHAp, which is further proved by their cancer cell inhibition results. We believe that the DOX@LHAp/PLGA scaffold has potential as an implantable drug delivery system.  相似文献   

15.
Surface modified nanoparticles composed of poly(isobutylcyanoacrylate) (PIBCA) cores surrounded by a chitosan and thiolated chitosan gel layer were prepared and characterized in previous works. The presence of such biopolymers on the nanoparticle surface conferred those nanosystems interesting characteristics that might partially overcome the gastrointestinal enzymatic barrier, improving the oral administration of pharmacologically active peptides. In the present work, the antiprotease behaviour of this family of core–shell nanoparticles was in vitro tested against two model metallopeptidases present in the gastrointestinal tract (GIT): Carboxypeptidase A -CP A- (luminal protease) and Leucine Aminopeptidase M -LAP M- (membrane protease). As previous step, the zinc-binding capacity of these nanoparticles was evaluated. Interestingly, an improvement of both the zinc-binding capacity and the antiprotease effect of chitosan was observed when the biopolymers (chitosan and thiolated chitosan) were used as coating component of the core–shell nanoparticles, in comparison with their behaviour in solution, thanks to the different biopolymer chains rearrangement. The presence of amino, hydroxyl and thiol groups on the nanoparticle surface promoted zinc binding and hence the inhibition of the metallopeptidases analysed. On the contrary, the occurrence of a cross-linked structure in the gel layer surrounding the PIBCA cores of thiolated formulations, due to the formation of interchain and intrachain disulphide bonds, partially limited the inhibition of the proteases. The low accessibility of cations to the active groups of the cross-linked polymeric shell was postulated as a possible explanation of this behaviour. Results obtained in this work make this family of surface-modified nanocarriers promising candidates for the successfull administration of pharmacologically active peptides and proteins by the oral route.  相似文献   

16.
卢璐  吉鸿飞  郭各朴  郭霞生  屠娟  邱媛媛  章东 《物理学报》2015,64(2):24301-024301
藻酸钙凝胶具有三维立体多孔结构, 能为细胞生长提供充分的附着空间, 且具有良好的生物相容性和一定的机械强度, 是一种理想的细胞支架材料. 本文研究了藻酸钙三维支架材料的力学特性与氯化钙/藻酸钠的配比的关系, 并提出采用低强度脉冲超声处理藻酸钙凝胶、基于超声空化效应增强藻酸钙凝胶孔隙率的新方法. 实验采用交联合成方法制备藻酸钙凝胶支架材料, 测量力学特性、孔洞的联通性与孔隙率, 并利用绿色荧光蛋白的表达评价细胞的增殖能力. 结果表明, 当氯化钙/藻酸钠的配比为3:5时, 凝胶的机械强度和弹性较好, 力学性能稳定, 为最佳配比参数. 采用声压0.055 MPa的脉冲超声作用20 min, 可以有效提高凝胶支架的孔隙率; 且细胞在该支架中生长状态良好, 呈现团簇状生长趋势.  相似文献   

17.
《Composite Interfaces》2013,20(7-9):851-866
Kenaf dust filled chitosan biocomposites have been prepared using a solution blending method. Diluted acetic acid was used as medium to dissolve the chitosan powder. Kenaf dust particles were dispersed in the chitosan solution using a high speed homogenizer. Chitosan biocomposites with five different compositions of kenaf loading (w/w) were prepared. The biocomposites were evaluated in terms of mechanical, chemical and micro-structural properties. The maximum tensile strength, tensile strain and toughness values were obtained from biocomposites containing 28% of kenaf dust, while pure chitosan film exhibit the lowest value as expected. Morphological study on the tensile fracture surface of the biocomposites under FESEM showed the interconnected structure of chitosan matrix with fine distribution of kenaf dust. From the FT-IR spectrum, the finger print peak of chitosan was detected (3233 cm?1) as well as the increasing in intensity of typical functional groups (aldehyde, primary amine and ammonium ions), indicating a strong interaction between kenaf dust and chitosan matrix.  相似文献   

18.
An incorporation of few weight percentage of n-type zinc oxide (ZnO) on the surface of yellow-emitting fluorescent polymer under mild conditions was demonstrated. Here, a deep level emissive ZnO was selectively deposited on the surface of fluorescent polymer via a simple chemical deposition bath method, at relatively low temperature. The polymer-zinc oxide hybrids, consisting of uniform nanosized spherical fluorescent polymer, having mean diameter ca. ∼500-700 nm were subjected as core molecules capped with different weight ratio of ZnO on the surfaces were prepared successfully. The relative photoluminescence emission efficiency was drastically enhanced as two-fold with just 4 wt% of ZnO incorporation and also more than 10-fold improvement in 50 wt% of ZnO content with respect to pure fluorescent polymer. Bright and efficient white light-emitting devices have been fabricated with these hybrid materials, such as luminescence converter light-emitting diodes (LUCO LEDs), using commercially available GaN LED (460 nm), as a primary pumping source. A device containing 20 wt% of ZnO incorporated hybrid material (2 wt%) exhibits nearly pure white light, having Commission Internationale de I’Eclairage coordinates of (0.30, 0.36) and total luminous flux of 1.80 lm, at an operating voltage of 20 mA. The lifetime measurement data of fabricated device containing polymer-ZnO hybrid materials showed significant improvements over the pure counterpart, due to the “caging effect” of the ZnO shell, which can reduce the self-quenching of the polymer molecules in the core.  相似文献   

19.
Chitosan-gelatin (CG) scaffolds were fabricated with glutaraldehyde as a cross-linker by vacuum freeze-drying. Mixtures of different volumes of chitosan and glutaraldehyde were considered. Morphology, porosity, density, and water absorbency of the scaffolds were studied. Both tensile and compressive properties of the scaffolds were tested. In addition, cellular adherence, proliferation, and morphology on the scaffolds were tested to evaluate the compatibility. It was found that porosity, density, water absorbency, and mechanical properties of CG scaffolds changed with the variation of chitosan or GA content. The adequate adherence, proliferation, and morphology of HaCaT type cells on the scaffolds showed that these scaffolds can be used as carriers for culturing HaCaT. The CG scaffolds, particularly those with chitosan-gelatin volume ratios of 1:1 and adding 6% or 8% volume of 0.25 wt% GA solution, were more suitable than the others through comparing the above properties and could be promising candidates for engineering skin tissue.  相似文献   

20.
Designing and fabricating nanocomposite scaffolds based on biodegradable polymers and bioactive materials are an important topic in the area of bone regeneration. A novel nanocomposite scaffold composed of polyurethane (BPU) and nano-bioactive glass (NBAG) was prepared. The effects of the NBAG content on the properties of the BPU/NBAG composite scaffolds, including the morphologies, porosity and compressive strength, were investigated. The BPU/NBAG composite scaffolds showed an interconnected pore structure with the pore size ranging from 50 to 500?μm for all samples. The porosity percent and swelling ability decreased with increasing NBAG content; however, the compressive strength was enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号