首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic light‐emitting diodes (OLEDs) are discussed for electro‐optical integrated devices that are used for optical signal transmission. Organic optical devices including polymeric optical fibers are used for optical communication applications to realize polymeric electro‐optical integrated devices. The OLEDs were fabricated by vacuum process, i.e. the organic molecular beam deposition (OMBD) technique or a solution process on a polymeric or a glass substrate, for comparison. Optical signals faster than 100 MHz have been created by applying pulsed voltage directly to the OLED utilizing rubrene doped in 8‐hydoxyquinolinum aluminum (Alq3), as an emissive layer. OLEDs fabricated by solution process utilizing rubrene doped in carrier‐transporting materials have also discussed. OLEDs utilizing polymeric materials by solution process are also fabricated and discussed. Moving‐picture signals are transmitted utilizing both vacuum‐ and solution‐processed OLEDs, respectively.  相似文献   

2.
In this paper, the undercut structures were fabricated by microtransfer printing of metal films on the surface of photoresist combined with UV exposure and photoresist film developing. The patterned metal films were used as mask to realize the selective UV exposure of photoresist firstly. The undercut structures, which consist of the top metal films and the patterned bottom photoresist, formed in the subsequent developing process because of the lateral dissolving of photoresist at the edge of the unexposed regions. The method proposed in this paper has wider tolerance to the changing of the patterning parameters, but without effect on the patterning resolution since the metal film was used as the top layer. The undercut structures were used as separators to pattern passive-matrix display of organic light-emitting diodes (OLEDs). No visible difference of the device performance was observed compared with the OLEDs patterned by the shadow mask.  相似文献   

3.
《Current Applied Physics》2015,15(11):1472-1477
Electrical characteristic and luminance of three mixed-host organic light emitting diodes (OLEDs): namely the uniformly mixed, step-wise graded and mixed, and continuously graded and mixed, were compared with the conventional hetero-junction OLED in both numerical and experimental studies. These mixed-host OLEDs were fabricated by a mixed-source thermal evaporation process, and half-cell devices were also fabricated to provide some input parameters for OLED simulations. The current efficiencies were largely influenced by their device structures and strongly agreed with the computed current balance factors. The improved mixed-host OLED performances can be discussed with aid from simulations, which include spatial distributions of electron and hole, carrier mobility, electric field profiles, the total recombination rates in the light emitting layer.  相似文献   

4.
对紫外固化环氧树脂封装的商品蓝光有机发光器件进行了打开封装后在高真空(10-5 Pa)环境下的寿命实验,同时对未开封的同样器件在大气环境下进行了同样参数的寿命实验。实验结果表明,高真空下未封装器件的加速寿命为1675 h,而大气下封装器件的加速寿命为1224 h。这一结果表明在高真空环境下,有机发光器件的寿命有明显的提高,这证明了水蒸气和氧气通过紫外固化环氧树脂封装材料的渗透是影响紫外环氧树脂封装有机电致的发光器体(OLED)寿命的重要因素;封装器件内的吸气片不能完全吸收经封装渗透进入器件内的水蒸气和氧气。除了水蒸气和氧气渗透封装的因素外,OLED的寿命过程还存在其他的重要影响因素。  相似文献   

5.
In this letter, bright non-doped red to yellow organic light-emitting diodes (OLEDs) with ultrathin 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) layer as the emitting layer were fabricated. It was investigated that the effect of the ultrathin DCJTB layer on the electroluminescent (EL) performance of OLEDs. The DCJTB layer was incorporated at different positions in the conventional tris(8-quinolinolato)-aluminum (AlQ)-based devices (ITO/NPB/AlQ/LiF/Al). The emission of DCJTB was dominative in the EL spectra of the devices, in which the position of 0.3 nm DCJTB layer was less than 10 nm from the NPB/AlQ interface. The EL peak emission of DCJTB shifted to blue side as DCJTB position moved gradually from AlQ to NPB layer. The highest brightness of the device with 0.3 nm DCJTB layer inserted into NPB reached 16,200 cd/m2 at 15 V, with the CIE coordinates of (0.522, 0.439).  相似文献   

6.
Display and illumination technology require light sources with angular independent emission behaviour. Conversely, a strongly angular dependent spectral emission can be desirable for other applications in information technology or spectroscopy. In order to elucidate the potential of organic light-emitting devices (OLEDs) for the latter fields, we performed experimental and numerical studies of the angular dependent emission characteristics of cavity like OLEDs. The light generated in the organic multilayer structure and guided in leaky modes was coupled out by a prism. Here, a semitransparent gold anode, acting as a hole injection layer, was used to enhance the coupling of leaky modes guided inside the OLED to external modes (Kretschmann configuration). The observed light emission was strongly angle dependent, with the spectral emission peak of the device shifting from a wavelength of 680 nm to 500 nm as the angle is varied between 20° and 70° with respect to the normal of the substrate plane. Also, the emitted light shows a high degree of polarization. The observed behaviour can be predicted quantitatively by simulations, which are based on the transfer matrix formalism.  相似文献   

7.
张文君  翟保才  许键 《发光学报》2012,33(11):1171-1176
通过调节作为发光层的量子点的尺寸,可以制作出覆盖可见光(380~780 nm)以及近红外光谱的量子点LED(QD-LED),其光谱范围很窄且半高宽可达30 nm。然而量子点LED的寿命、亮度以及效率需要进一步提高才能满足商业化的需求。为了研究QD-LED器件的特性,本文采用523 nm波长的CdSe/ZnS核壳型量子点为发光层、poly-TPD为空穴传输层、ZnO为电子传输层,制备了绿光量子点LED,并表征了器件的特性。  相似文献   

8.
We demonstrate all-in-one-type organic light-emitting diodes (OLEDs) that are fabricated using a color converting plate as a substrate. The color converting plate is Pb-free phosphor-in-glass (PiG), which is prepared by mixing Y3Al5O12:Ce3+ (YAG:Ce3+) and SiO2–B2O3–RO (R = Ba, Zn) glass frit by sintering at 750 °C for 30 min. The maximum luminance, luminance efficiency, and power efficiency of blue OLEDs fabricated on commercial glass are measured as 10500 cd/m2, 10.18 cd/A, and 2.95 lm/W, respectively. The Commission Internationale de l'Eclairge (CIE) coordinates of blue OLEDs is (0.167, 0.325). Our obtained results show that the luminance value decreased as the PiG thickness increased, and the glass to phosphor (GTP) ratio decreased. The OLED devices fabricated on the PiG substrate (GTP ratio = 9:1, thickness: 150 μm) showed a maximum luminance, luminance efficiency, and power efficiency of 7600 cd/m2, 8.76 cd/A, and 2.85 lm/W, respectively. The CIE color coordinates changed to (0.286, 0.504) at 200 mA/cm2. These results proved that color coordination can be easily adjusted by varying the GTP ratio and the thickness of the PiG.  相似文献   

9.
A flexible microcavity organic light-emitting diode (OLED) was fabricated and the emitting characteristics were examined. A pair of right- and left-handed cholesteric liquid crystal (CLC) films were attached to the microcavity OLED between aluminum (Al) and silver (Ag). Sharply directed spontaneous emission was observed from microcavity OLEDs, in which a typical luminescent material, 8-hydroxyquinoline aluminum (Alq3), with a broad emission spectrum was used for emitting layer. The introduction of the CLC film improved both the emission bandwidth and directionality, preserving the turn-on voltage and maximum brightness.  相似文献   

10.
A 10-nm-thick molybdenum tri-oxide(MoO3) thin film was used as the interconnector layer in tandem organic lightemitting devices(OLEDs).The tandem OLEDs with two identical emissive units consisting of N,N-bis(naphthalen-1-yl)N,N-bis(phenyl)-benzidine(NPB) /tris(8-hydroxyquinoline) aluminum(Alq3) exhibited current efficiency-current density characteristics superior to the conventional single-unit devices.At 20 mA/cm2,the current efficiency of the tandem OLEDs using the interconnector layers of MoO3 thin film was about 4.0 cd/A,which is about twice that of the corresponding conventional single-unit device(1.8cd/A).The tandem OLED showed a higher power efficiency than the conventional single-unit device for luminance over 1200cd/m2.The experimental results demonstrated that a MoO3 thin film with a proper thickness can be used as an effective interconnector layer in tandem OLEDs.Such an interconnector layer can be easily fabricated by simple thermal evaporation,greatly simplifying the device processing and fabrication processes required by previously reported interconnector layers.A possible explanation was proposed for the carrier generation of the MoO3 interconnector layer.  相似文献   

11.
将红、绿、蓝3种不同颜色的染料分别掺杂到相同的母体材料2,7-二(二苯基磷酰)-9-(4-二苯基胺)苯基-9-苯基芴(POAPF)中,制得了可发3种颜色光的高效率有机电致发光器件。进一步将两种互为补偿色的发光材料以合适的掺杂浓度掺到POAPF中,制得了高效率白光器件。该白光器件采用了单发光层结构,器件电致发光光谱稳定性好,随驱动电压变化较小。4种不同颜色的发光器件的最大功率效率分别为16.50,43.72,29.78,32.83 lm/W。  相似文献   

12.
The electrical and the optical properties of organic light-emitting devices (OLEDs) consisting of aluminum (Al)/lithium quinolate/tris (8-hydroxyquimoline) Al/5,6,11,12-tetraphenylnaphthacene (rubrene)-doped N,N′-bis-(1-naphthyl)-N,N′-diphenyl-1,1-biphenyl-4,4′-diamine (NPB)/indium-tin-oxide/glass structures fabricated with uniformly doped and stepwise-doped hole transport layers (HTLs) were investigated. The turn-on voltage of the OLEDs fabricated utilizing a stepwise-doped HTL was smaller than that of the OLEDs fabricated with a uniformly doped HTL, and the corresponding luminance at the same voltage was higher. The Commission Internationale de l'Eclairage (CIE) chromaticity coordinates of the OLEDs fabricated utilizing a stepwise-doped HTL became stabilized, and the CIE chromaticity coordinates of the OLEDs at 12 V was (0.43, 0.53), indicative of a yellow emission corresponding to the rubrene layer. The luminescence mechanisms of the OLEDs fabricated utilizing a stepwise-doped HTL are described on the basis of the experimental results.  相似文献   

13.
路飞平  王倩  周翔 《中国物理 B》2013,22(3):37202-037202
A 10-nm thickness molybdenum tri-oxide (MoO3) thin film was used as the interconnector layer in tandem organic light-emitting devices (OLEDs). The tandem OLEDs with two identical emissive units consisting of N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB)/tris(8-hydroxyquinoline) aluminum (Alq3) exhibited current efficiency-current density characteristics superior to the conventional single-unit devices. At 20 mA/cm2, the current efficiency of the tandem OLEDs using the interconnector layers of MoO3 thin film was about 4.0 cd/A, which is about twice of that of the corresponding conventional single-unit device (1.8 cd/A). The tandem OLED showed a higher power efficiency than the conventional single-unit device for luminance over 1200 cd/m2. The experimental results demonstrated that a MoO3 thin film with a proper thickness can be used as an effective interconnector layer in tandem OLEDs. Such an interconnector layer can be easily fabricated by simple thermal evaporation, greatly simplifying the device processing and fabrication processes required by previously reported interconnector layers. A possible explanation was proposed for the carrier generation of the MoO3 interconnector layer.  相似文献   

14.
Taiki Kawai 《Surface science》2007,601(22):5276-5279
Indium-tin-oxide (ITO) surfaces were treated with O2 and H2 plasmas. The contact angle of water, X-ray photoelectron spectroscopy (XPS) spectra, and luminescence characteristics of organic light-emitting devices (OLEDs) fabricated on plasma-treated ITO surfaces using poly(N-vinylcarbazole) (PVK) films doped with 5,6,11,12-tetraphenylnaphthacene (rubrene) or Nile Red were investigated.Using O2 plasma treatment, the contact angle was reduced from 35° to 13°. The luminance of OLEDs with rubrene was significantly improved. The luminous color of an OLED inserted poly (3,4-ethylenedioxythiophene)-polystyrene sulphonic acid (PEDOT-PSS) layer between Nile Red-doped PVK film and O2-plasma-treated ITO surface turned white as the applied voltage increased.  相似文献   

15.
This work presents novel field emission organic light emitting diodes(FEOLEDs) with dynode,in which an organic EL light-emitting layer is used instead of an inorganic phosphor thin film in the field emission display(FED).The proposed FEOLEDs introduce field emission electrons into organic light emitting diodes(OLEDs),which exhibit a higher luminous efficiency than conventional OLED.The field emission electrons emitted from the carbon nanotubes(CNTs) cathode and to be amplified by impact the dynode in vacuum.These field emission electrons are injected into the multi-layer organic materials of OLED to increase the electron density.Additionally,the proposed FEOLED increase the luminance of OLED from 10 820 cd/m2 to 24 782 cd/m2 by raising the current density of OLED from an external electron source.The role of FEOLED is to add the quantity of electrons-holes pairs in OLED,which increase the exciton and further increase the luminous efficiency of OLED.Under the same operating current density,the FEOLED exhibits a higher luminous efficiency than that of OLED.  相似文献   

16.
One of the porphyrin derivatives, meso-tetraphenylporphyrin (TPP), has been synthesized and examined as an emitter material (EM) for efficient fluorescent red organic light-emitting diodes (OLEDs). By inserting a tungsten oxide (WO3) layer into the interface of anode (ITO) and hole transport layer N,N′-Di-[(1-napthyl)-N,N′-diphenyl]-(1,1′-biphenyl)-4,4′-diamine (NPB) and by using fullerene (C60) in contact with a LiF/Al cathode, the performance of devices was markedly improved. The current density–voltage–luminance (JVL) characterizations of the samples show that red OLEDs with both WO3 and C60 as buffer layers have a lower driving voltage and higher luminance compared with the devices without buffer layers. The red OLED with the configuration ITO/WO3 (3 nm)/NPB (50 nm)/TPP (60 nm)/BPhen (30 nm)/C60 (5 nm)/LiF (0.8 nm)/Al (100 nm) achieved the high luminance of 6359 cd/m2 at the low driving voltage of 8 V. At a current density of 20 mA/cm2, a pure red emission with CIE coordinates of (0.65; 0.35) is observed for this device. Moreover, a power efficiency of 2.07 lm/W and a current efficiency of 5.17 cd/A at 20 mA/cm2 were obtained for the fabricated devices. The study of the energy level diagram of the devices revealed that the improvement in performance of the devices with buffer layers could be attributed to lowering of carrier-injecting barrier and more balanced charge injection and transport properties.  相似文献   

17.
采用直接光强调制的方法,建立了一种新型有机电致发光器件(OLED)的光电信号传输体系,研究了发光层掺杂、发光面积和预置电压对OLED响应速度的影响。结果发现:与发光层为单独的Alq3的器件相比较,掺杂rubrene的发光层的荧光寿命较短,响应较快;减小OLED的发光面积能提高OLED的响应速度,并在0.02 mm2的发光面积上实现了100 Mbit/s的信号传输速度;同时,预置直流电压也能改善OLED的响应速度。最后,提出将柔性OLED与聚合物波导及有机光电二极管结合,实现了一种全有机的柔性光电子体系。  相似文献   

18.
The main focus of this study is to improve the light extraction efficiency, as well as directionality of organic light emitting diodes (OLEDs) using multi-layer structures between Indium tin Oxide (ITO) and glass layers in a typical OLED. In conventional OLEDs, only about half of the light generated in the emission zone can reach to the glass substrate due to refractive index mismatch in ITO (n = 1.8?i0.01)/glass (n = 1.51) interface. The main attempt is to reduce the share of total internal reflection (TIR) and hence, the effect of different structures such as Thue-Morse and Fibonacci have been investigated and optimized with suitable layer thickness and materials based on Transfer Matrix Method (TMM). The most effective Multi-layer structures have been added to conventional OLED and have been analyzed the extraction efficiency using Finite Difference Time Domain (FDTD) method. Results show large enhancement of extraction efficiency (about 40%) in ITO/glass interface. Using this idea and applying micro-lenses array to glass substrate at the same time, one can get even higher extraction efficiency in OLED. The interesting aspect of this project is its easy fabrication process in order to commercialize the product with highest extraction efficiency and low fabrication cost.  相似文献   

19.
为了提高以TADF材料作为主体、天蓝色荧光材料作为客体的混合薄膜的OLED器件光电性能,我们调整了器件结构,使主体材料发挥其优势。制备了基本结构为ITO/NPB(40 nm)/DMAC-DPS∶x%BUBD-1(40 nm)/Bphen(30 nm)/LiF(0.5 nm)/Al的OLED器件。研究了主-客体材料在不同掺杂浓度下的OLED器件的光电特性。为了提高主体材料的利用率,在空穴传输层和发光层之间加入10 nm的DMAC-DPS作为间隔层;然后,在阳极和空穴传输层之间加入HAT-CN作为空穴注入层,形成HAT-CN/NPB结构的PN结,有效降低了器件的启亮电压(2.7 V)。测量了有无HAT-CN的单空穴器件的阻抗谱。结果表明,在最佳掺杂比例(2%)下,器件的外量子效率(EQE)达到4.92%,接近荧光OLED的EQE理论极限值;加入10 nm的DMAC-DPS作为间隔层,使得器件的EQE达到5.37%;HAT-CN/NPB结构的PN结有效地降低了器件的启亮电压(2.7 V),将OLED器件的EQE提高到5.76%;HAT-CN的加入提高了器件的空穴迁移率,降低了单空穴器件的阻抗。TADF材料作为主体材料在提高OLED器件的光电性能方面具有很大的潜力。  相似文献   

20.
We have investigated the performance of organic light-emitting devices (OLEDs) with a rubrene-doped mixed single layer by using 4,4′-bis[N-(1-napthyl)-N-phenyl- amion] biphenyl (α-NPD) as hole transport layer. Comparing to a conventional heterostructure OLED, equal luminance vs. current density characteristics were obtained. In addition, maximum power efficiency was threefold improved, and the achieved value was 5.90 lm/W by optimizing a mixing ratio of hole and electron transport materials. By evaluating the temperature dependence of the J V characteristics for electron-injection dominated device, the electron injection from Al/LiF to mixed organic layer is attributed to Schottky thermal emission model. And the barrier height of the electron injection from Al/LiF into mixed single layer was obtained to be 0.62 eV, which is lower than Al/Alq3 interface. Meanwhile, the mixed single-layer device exhibited superior operational durability at a half-luminance of 2,250 h under a constant current operation mode. The reliability was improved with a factor of two compared to the heterostructure device due to the improvement of stability in mixed organic molecules and removal of the heterojunction interface in the mixed single-layer device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号