首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ag films on Si substrates were fabricated by immersion plating and served as sacrificial materials for preparation of Ag/Au bimetallic films by galvanic replacement reaction. The formation procedure of films on the surface of Si was studied by scanning electron microscopy (SEM), which revealed Ag films with island and dendritic morphologies experienced novel structural evolution process during galvanic replacement reaction, and nanostructures with holes were produced within the resultant Ag/Au bimetallic films. SERS activity both of sacrificial Ag films and resultant Ag/Au bimetallic films was investigated by using crystal violet as an analyte. It has been shown that SERS signals increased with the process of galvanic substitution and reached intensity significantly stronger than that obtained from pure Ag films.  相似文献   

2.
By irradiating a Ag colloid solution, produced by trisodium citrate reduction method, employing the active Quanta Ray Nd:YAG laser system, λ = 1064 nm, we prepared relatively small, spherical Ag nanoparticles with a narrow size distribution. The irradiated particles not only improve the configuration, but also the spectroscopy properties to some extent. The influence of the laser fluence on the irradiated energy was studied, via transmission electron micrograph (TEM) images, surface plasmon absorption (SPA) spectra, and surface-enhanced Raman scattering (SERS) spectra. Those benefit to understanding the spectroscopy properties of irradiated particles to obtain precise understanding of the mechanism. And probably the reasonable explanations are given.  相似文献   

3.
Tubular arrays of TiO2 nanotubes (ranging in diameter from 40 to 110 nm) on a Ti substrate were used as a support for Ag, Au or Cu deposits obtained by the sputter deposition technique, where the amount of metal varied from 0.01 to 0.2 mg/cm2. Those composite supports were intended for surface-enhanced Raman scattering (SERS) investigations. Composite samples were studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Raman spectra of pyridine (as a probe molecule) were measured at different cathodic potentials ranging from −0.2 down to −1.2 V after the pyridine had been adsorbed on the metal-covered TiO2 nanotube/Ti substrates. In addition, SERS spectra on a bulk standard activated Ag, Au and Cu substrates were also measured. The SERS activity of the composite samples was strongly dependent on the amount of metal deposit, e.g. at and above 0.06 mg Ag/cm2, the intensity of SERS signal was even higher than that for the Ag reference substrate. The high activity of these composites is mainly a result of their specific morphology. The high SERS sensitivity on the surface morphology of the substrate made it possible to monitor very small temporal changes in the Ag metal clusters. This rearrangement was not detectable with microscopic (SEM) or microanalytical (AES) methods. The SERS activity of Au or Cu clusters was distinctly lower than those of Ag. The spectral differences exhibited by the three kinds of composites as compared to the reference metal samples are discussed.  相似文献   

4.
Polyvinyl alcohol (PVA)-protected Ag colloids were prepared by an electrolysis method. The surface-enhanced Raman scattering (SERS) spectra of Methyl Orange (MO), one of the Azo-dye molecules, in Ag colloids were successfully recorded with good concordance comparing to the theoretical results calculated by the Gaussian’98 program. The MO was adsorbed on the surface of Ag nanoparticles by trans-form which plays an important role for the SERS effect. However, the SERS spectra of MO in Ag colloids prepared by chemical reduction method did not appear which may be because of the competition of the borate or citrate ions with the MO. In order to test the applicability of these colloids, the SERS spectra of Sudan red (III) (SR), another of Azo-dye molecules, were measured and the result was good.  相似文献   

5.
We review recent our results in the fundamental study of surface-enhanced Raman scattering (SERS) with emphasis on experiments that attempted to identify the enhancement and blinking mechanism using single Ag nanoparticle dimers attached to dye molecules. These results are quantitatively discussed in the framework of electromagnetic mechanism. We also review recent our results in basic SERS applications for biological sensing regarding detections of cell surface molecules and distinction of disease marker molecules under single cell and single molecule level.  相似文献   

6.
In this paper, an Au/Ag bimetallic hollow nanostructure was obtained by using SiO2 nanospheres as sacrificial templates. The nanostructure was fabricated via a three steps method. SiO2@Au nanospheres were first synthesized by the layer-by-layer technique, and then they were coated with a layer of Ag particles, finally, the Au/Ag bimetallic hollow nanospheres were obtained by dissolution of the SiO2 core by exposure in HF solution. Several characterizations, such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and UV visible absorption spectroscopy were used to investigate the prepared nanostructures. The effectiveness of these Au/Ag bimetallic hollow nanospheres as substrates toward surface-enhanced Raman scattering (SERS) detection was evaluated by using rhodamine 6G (R6G) as a probe molecule. We show that such Au/Ag bimetallic hollow nanospheres structure films which consisting of larger interconnected aggregates are highly desirable as SERS substrates in terms of high Raman intensity enhancement. The Au/Ag bimetallic hollow nanostructured aggregate, interconnected nanostructured aggregate and nanoscale roughness are important factors responsible for this large SERS enhancement ability.  相似文献   

7.
Au/Ag core/shell bipyramids were used as surface‐enhanced Raman scattering (SERS) substrates to determine the thiram. The metallic substrates showed high SERS performance and are very suitable for the analytical sensors. The fabrication and characterization of the Au/Ag core/shell bipyramids were described. The influence of experimental parameters, such as the thickness of Ag shell of the bipyramids, sodium chloride concentration, and pH value on SERS of thiram was examined and optimized. Under the optimum conditions, thiram molecules were effectively adsorbed onto bipyramids and the SERS intensity is proportional to the concentration of thiram in the range of 3.3 to 400.0 ng mL–1. The corresponding correlation coefficient of the linear equation is 0.997, which indicates that there is a good linear relationship between SERS intensity and thiram concentration. The limit of detection for thiram is 2.0 ng mL–1. The experimental results indicate that the proposed method is a viable method for determination of thiram. Some environmental water samples were analyzed and the analytical results were satisfactory. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Ag colloids were prepared by the microwave heating method. The UV‐visible spectrum and the transmission electron microscopy (TEM) were employed to characterize the Ag colloids. The surface‐enhanced Raman scattering (SERS) spectra of chloramphenicol (CAP) in Ag colloids were successfully recorded. The Raman spectra of CAP were recorded with good concordance comparing to the theoretical results calculated by the Gaussian'98 program. CAP molecules on the Ag surface are oriented tilted to the particle surface via C20‐O23, N‐O13, and N‐O23, which played an important role in the SERS effect. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
We review the performance of various nanoscaled structures needed to support the propagation of the surface plasmons responsible for surface‐enhanced Raman scattering (SERS), and assess the potential for the optimisation of the compromise between enhancement and reproducibility that they provide, and hence their utility for relevant applications. We divide these nanostructures into those comprising structured arrays of discrete nanoparticles in two or three dimensions, and those comprising structured or regularly patterned surfaces in two or three dimensions. The most promising in terms of this compromise are those that involve the tethering of functionalised metal nanoparticles to surfaces. They are not only reproducible, but the functionalisation provides a measure of selectivity to relevant target analytes that the majority of SERS applications require. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Ag nanoparticles were exclusively deposited inside the pores of the porous anodic alumina (PAA) template through the deposition cycle including the incubation and the subsequent reduction of Ag(NH3) . Both the density and size of the produced Ag nanoparticles increased as the deposition cycle number increased. A field‐emission scanning electron microscopeand an ultraviolet‐visible spectrometer were applied, respectively, to study the morphology and the extinction spectra of the Ag nanoparticles. The optimum deposition number was found from the scanning electron microscope (SEM) analysis. Surface enhanced Raman scattering (SERS) spectra of p‐aminothiophenol recorded on the Ag–PAA substrates prepared under increasing number of deposition cycles, manifested an enlarging trend of peak intensity. A point‐by‐point SERS mapping of p‐aminothiophenol on the Ag–PAA substrate was acquired to characterise the homogeneity of the substrate. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
A tubular array of TiO2-nanotubes on a Ti substrate was used as a support for an Ag sputter-deposited layer intended for surface-enhanced Raman scattering (SERS) investigations. Composite samples of Ag/TiO2-nanotube/Ti were studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Raman spectra of pyridine (as a probe molecule) were measured at different cathodic potentials ranging from −0.2 down to −1.2 V after the pyridine had been adsorbed on the TiO2-nanotube/Ti substrates covered with the Ag deposit. In addition, SERS spectra on a bulk electrochemically-roughened Ag reference substrate, were also measured.The SERS activity of the composite samples was strongly dependent on the amount of Ag deposit and, in some cases, was even higher than that for the Ag reference substrate. The SERS intensity vs. electrode potential dependences measured were interpreted in terms of the modified electronic structure of the Ag deposits due to the interaction of the Ag clusters with the TiO2-nanotube/Ti substrate.  相似文献   

12.
《Current Applied Physics》2015,15(6):711-716
The nanostructures found in nature sometimes have elaborate, three-dimensional structures that consist of soft and flexible constituents, and which exhibit diverse mechanical and optical functions. Here, we introduce a facile, low-cost and scalable nanofabrication approach based on a hot embossing process that can replicate sub-micron to nanoscale features on elastomeric substrates. We have further developed this technique to achieve polymer/metal heterostructure nanopillar arrays via conformal coating of Au films on polymeric templates. Each nanopillar displays a smooth surface and a constant diameter along the vertical direction. Raman spectroscopy studies revealed that the metallic nanostructures decorated with methylene blue exhibited a dominant Raman peak at 1624 cm−1 that was enhanced more than 3000 times and seven times relative to bare planar Si and Au-coated planar polystyrene substrates, respectively. These results indicate that our nanopillar array can be exploited as a flexible, large area platform for surface-enhanced Raman spectroscopy.  相似文献   

13.
A facile and novel way was reported here for the synthesis of hydrophobic Ag nanoparticles (NPs), using AgNO3, tri-n-octylphosphine (TOP) and sulfur (S) powder in process. TOP was used as solvent, reducing agent and stabilizer. S could chelate with excessive TOP to form trioctylphosphine sulfide (TOPS), which served as second capping agent. The hydrophobic Ag NPs could be transformed into hydrophilic state through ligand exchange. Furthermore, surface-enhanced Raman scattering (SERS) spectra of 4-aminothiophenol (4-ATP) were obtained on the hydrophobic and hydrophilic Ag NPs modified substrates, indicating that the as-synthesized Ag NPs had great potential for high sensitive optical detection applications.  相似文献   

14.
The degree of charge‐transfer in Ag–4‐mercaptopyridine (Mpy) and Ag2S–4‐Mpy systems is investigated by use of surface‐enhanced Raman spectroscopy (SERS). Ag2S and Ag2Se nanoparticles are prepared on the basis of the former formation of Ag nanoparticles to make the SERS analytical objects comparable. We utilize the intensity of the non‐totally symmetric modes (either b1 or b2) as compared with the totally symmetric a1 modes to measure the degree of charge‐transfer. We find ~25% of charge‐transfer contribution for Ag–4‐Mpy, whereas 81 ~ 93% for Ag2S–4‐Mpy. It means that the charge‐transfer resonance contribution dominates the overall enhancement in SERS of Ag2S–4‐Mpy. Energy level diagram is applied to discuss the likely charge‐transfer transition between Ag, Ag2S, Ag2Se and 4‐Mpy. This article may point out the link among the three main resonance sources and could enable some insights into the electronic pathways available to the metal‐molecule and semiconductor‐molecule systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Ag核Au壳复合纳米粒子为标记溶胶免疫检测的SERS研究   总被引:3,自引:2,他引:1  
以种子生长法合成Ag核Au壳复合纳米粒子,苯硫酚分子(TP)在其表面的SERS增强随Au摩尔比例的增加呈现先增强后减弱的趋势,其最大增强为相应Ag纳米粒子的10倍。将标记分子TP,羊抗小鼠抗体固定在Ag核Au壳复合纳米粒子表面形成标记免疫溶胶,其与被基底捕获抗原分子发生免疫识别,通过TP分子的SERS信号进行免疫检测。  相似文献   

16.
利用相对论小核赝势研究了重金属钋化物分子MPo(X2∏),(M=Cu,Ag,Au).用群论方法结合原子分子反应静力学原理导出了分子的基电子状态和相应的离解极限,并在各种电子相关理论水平上计算了它们的平衡几何和振动频率.在此基础上用Murrell-Sorbie函数形式拟和势能曲线,得到了总的解析势能函数,并计算出了光谱数据和力常数.  相似文献   

17.
Raman‐enhancing properties of chitosan (CS)‐coated gold/silver nanostars (Au/AgNSs) were demonstrated by using them as a surface‐enhanced Raman scattering (SERS) probe. Based on the energy‐dispersive X‐ray spectroscopy element distribution maps and highly enhanced SERS spectra, we suggest that the incorporation of silver into the NS tips leads to a stronger SERS behavior. The SERS spectra of the proteins adsorbed on the NS surface greatly differ from their respective Raman spectra in both the band positions and relative intensities, indicating that the protein molecules penetrate through the CS coating layer and interact closely with the NS surface. Raman and SERS spectra of Chlamydia trachomatis protease/proteasomelike activity factor are reported for the first time, demonstrating the potential of these NSs for the development of a diagnosis method for Chlamydia based on SERS. The results showed a good SERS performance of the Au/AgNSs and their potential for SERS detection of biomolecules. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this work, Ag nanoparticles (NPs) were deposited on patterned TiO2 nanotube films through pulse‐current (PC) electrodeposition, and as a result patterned Ag NPs films were achieved. Scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and X‐ray diffraction (XRD) were used, respectively, to study the morphology, uniformity, and phase structure of the patterned Ag NP films. The size and density of the as‐deposited Ag NPs could be controlled by changing the deposition charge density, and it was found that the patterned Ag NP films produced under a charge density of 2.0 C cm−2 gave intense UV–vis and Raman peaks. Two‐dimensional surface‐enhanced Raman scattering (SERS) mapping of rhodamine 6G (R6G) on the patterned Ag NP films demonstrated a high‐throughput, localized molecular adsorption and micropatterned SERS effect. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Surface‐enhanced Raman scattering (SERS) is an extremely powerful tool for the analysis of the composition of bimetallic nanoparticle (BNP) surfaces because of the different adsorption schemes adopted by several molecules on different metals, such as Au and Ag. The preparation of BNPs normally implies a change in the plasmonic properties of the core metal. However, for technological applications it could be interesting to synthesize core–shell structures preserving these original plasmonic properties. In this work, we present a facile method for coating colloidal gold nanoparticles (NPs) in solution with a very thin shell of silver. The resulting bimetallic Au@Ag system maintains the optical properties of gold but shows the chemical surface affinity of silver. The effectiveness of the coating method, as well as the progressive silver enrichment of the outermost part of the Au NPs, has been monitored through the SERS spectra of several species (chloride, luteolin, thiophenol and lucigenin), which show different behaviors on gold and silver surfaces. A growth mechanism of the Ag shell is proposed on the basis of the spectroscopic and microscopic data consisting in the formation and deposit of Ag clusters on the Au NP surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
银纳米颗粒阵列的表面增强拉曼散射效应研究   总被引:1,自引:0,他引:1       下载免费PDF全文
程自强  石海泉  余萍  刘志敏 《物理学报》2018,67(19):197302-197302
利用具有高密度拉曼热点的金属纳米结构作为表面增强拉曼散射(SERS)基底,可以显著增强吸附分子的拉曼信号.本文通过阳极氧化铝模板辅助电化学法沉积制备了高密度银(Ag)纳米颗粒阵列;利用扫描电子显微镜和反射谱表征了样品的结构形貌和表面等离激元特性;用1, 4-苯二硫醇(1, 4-BDT)为拉曼探针分子,研究了Ag纳米颗粒阵列的SERS效应.通过优化沉积时间,制备出高SERS探测灵敏度的Ag纳米颗粒阵列,检测极限可达10~(-13)mol/L;时域有限差分法模拟结果证实了纳米颗粒间存在强的等离激元耦合作用,且发现纳米颗粒底端的局域场增强更大.研究结果表明Ag纳米颗粒阵列可作为高效的SERS基底.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号