首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We propose refractive index sensors based on Ag-metalized nanolayer in microstructured optical fibers. The surface plasmon resonance modes and the sensing properties are theoretically analyzed using finite element method (FEM). In the calculation, Drude–Lorentz model is used to describe the Metal Dielectric constant. The calculation results show that the sensitivity of Ag-metalized SPR sensor can reach 1500 nm/RIU corresponding to a resolution of 6.67 × 10?5 RIU. Comparing with conventional detecting material-Au under the same structure, the sensitivity and 3 dB bandwidth of our device are better.  相似文献   

2.
We propose a special refractive index sensor design based on a photonic crystal fiber. Two analyte channels are introduced, with one analyte channel coated with gold layer and the other one without gold layer. A hybrid resonance method is used in the sensor to achieve a large dynamic index range, where surface plasmon resonance occurs when the analyte index is lower than that of the fiber material, while the core mode couples with the resonant mode of the adjacent analyte-filled cylinder when the analyte index is larger than the fiber material. When considering fluorinated polymer fibers, a broad index range of analyte refractive index from 1.25 to 1.45 with high sensitivity can be achieved. The maximal sensitivities reach 1.4 × 104 nm/RIU and 2.7 × 104 nm/RIU respectively when refractive index is in the range of 1.25 to 1.383 and 1.383 to 1.45. The sensor characteristics, make this simple sensor very interesting for detecting a wide range of fluid's refractive index or chemical agent concentration.  相似文献   

3.
We present and numerically characterize a dual channel surface plasmon resonance (SPR) sensor based on a D-shaped fiber with a central hole for silicone oil detections. The proposed design incorporates two metalized channels to facilitate the simultaneous detection of one group of silicone oils, which can consist of two different species. It has been demonstrated that the p-polarized input light can induce two peaks among surface plasmon resonance places, which come from the coupling between the core-guided mode and the fundamental surface plasmon polariton (SPP) modes at the D-shaped surface and around the central hole surface. However, the s-polarized input light can only induce one peak among surface plasmon resonance places, which comes from the coupling between the core-guided mode and the fundamental SPP mode around the central hole surface. The simulation results show that the characteristic responses of two channels independently correspond to the refractive index variations in the silicone oils with which they are in contact. A maximum sensitivity of 3500 nm/RIU (refractive index unit) and 4400 nm/RIU are achieved for channel A and B, respectively. This kind of sensor structure and polarization related demodulation method is promising in the simultaneous multi-analytes sensing applications in the future.  相似文献   

4.
We propose a refractometric sensor based on micro/nanofiber Bragg grating (MNFBG). The refractive index (RI) sensing performance dependence on the fiber radius and Bragg grating period of the sensor, as well as the temperature cross-sensitive effect, is investigated theoretically. The simulation results demonstrate that 400 nm-radius MNFBG has a linear response to RI ranging from 1.3 to 1.39 with a sensitivity as high as 992.7 nm/RIU and half temperature cross-sensitivity of normal FBG. A maximum sensitivity of up to 1200 nm/RIU and an outstanding RI resolution of 8.3 × 10-6 can be achieved. MNFBG has high potential in various types of optical fiber sensor applications.  相似文献   

5.
This study proposes a simple, cost-effective method to fabricate fiber-based Mach–Zehnder interferometer (MZI) sensors by concatenating two ultra-abrupt fiber tapers together using a fusion splicer. By concatenating, the taper diameter and length ratio is 1:1 that is much greater than that (1:10) by stretching. The refractive index sensitivity is comparable to the MZI sensors based on long-period fiber grating pairs or stretched fiber taper pairs. The MZI fiber claddings are etched to improve the sensitivity of refractive index measurements. The sensitivity is 664.57 nm/RIU (refractive index unit) for the refractive index ranging from 1.3348 to 1.3558, which is 2–6 times greater than those measured by long period fiber gratings (LPFGs) after sensitivity enhancement.  相似文献   

6.
A novel surface plasmon-polaritons (SPPs) refractive index sensor based on tooth-shaped metal–insulator–metal structure is proposed and numerically simulated by using the finite difference time domain method with perfectly matched layer absorbing boundary condition. Both analytic and simulated results show that the transmission minima wavelengths in the transmitted spectrum of the sensor have a linear relationship with the refractive index of material under sensing. Based on the relationship, the refractive index of the material can be obtained from the detection of one of the transmission minima wavelengths in the transmitted spectrum. The resolution of refractive index of the nanometeric sensor can reach as high as 10? 6, given the wavelength resolution of 0.01 nm. It could be applied to high-resolution biological sensing.  相似文献   

7.
We present a polarization independent fishnet negative index metamaterial at 40 GHz. The structure is investigated theoretically using finite element method simulations and experimentally by measuring the amplitude and phase of the S-parameters. The experimental setup for free space measurements of both transmission and reflection is hereby introduced. The internal properties are thereafter retrieved and show the double-negative behavior of the structure. This negative index metamaterial exhibits very high transmission (?0.13 dB), low reflection (?33.1 dB) and a high figure of merit (FOM = |Re(n)/Im(n)| = 42), where the real part of the refractive index is nearly ?1 (Re(n) = ?0.93) at 40 GHz.  相似文献   

8.
We present a new optical sensor based on surface plasmon resonance (SPIt) enhanced lateral optical beam displacements. Compared with the traditional SPIt methods, the new method provides higher sensitivity to the sensor system. Theoretical simulations show that the refractive index (RI) detection sensitivity of the SPR sensor based on the displacement measurement has a strong dependence on the thickness of the metal film. When the optimal thickness of the metal film is selected, the RI resolutlon of the SPIt sensor is predicted to be 2.2 × 10^-7 refractive index units (RIU). Furthermore, it is found that the incidence angle can be used as a parameter to adjust the operating range of the sensor to different refractive index ranges.  相似文献   

9.
This paper describes the performance of an amperometric sensor for thiol detection. The sensor was designed based on a Prussian blue (PB) glassy carbon (GC) electrode. Prussian blue was chemically deposited onto the glassy carbon electrode by a dropletting method. Thiol compounds were detected at the PB-modified GC electrode by electrooxidation. A PB-modified glassy carbon electrode was applied to detect thiol at an applied potential of +0.25 V versus the Ag/AgCl electrode. This sensor showed an excellent electrochemical response for thiol compounds below μmol level with high sensitivity and selectivity and short response time. In the case of aminoethanethiol, the sensor showed a wide linearity range with RSDs <4% for the whole analyses, which reflected the highly reproducible sensor performance. The optimal conditions were investigated. By using the optimized conditions, the detection limit was found to 0.4 μM for aminoethanethiol (based on S/N = 3).  相似文献   

10.
We propose and analyze a high effective Q-factor triangular ring resonator (TRR) coupled with an asymmetric Mach–Zehnder interferometer (AMZI), in which the long evanescent fields on a total internal reflection (TIR) mirror in the TRR and the field cancelation by the phase difference of each path in the AMZI are utilized. The TRR is employed in order to more effectively measure the quantities that occur during biological events because the evanescent field of the TIR mirror with its sharp incident angle is influenced by the Goos–Hänchen shift. In this paper, we report upon the AMZI-coupled TRR sensor structure with the high effective Q-factor of about 105 obtained through the optimization of the AMZI path-length. The sensitivity of the resonance shift when changing the refractive index of 1 × 10? 4 at the incidence angle of 22.92° has been identified to be as high as 0.48 × 104 nm/RIU. In addition, the power sensitivity of the AMZI-coupled TRR with a 17 dB attenuation is 5.7 × 105 dB/RIU.  相似文献   

11.
Pulsed digital holographic interferometry has been used to investigate the plume and the shock wave generated in the ablation process of a Q-switched Nd-YAG (λ=1064 nm and pulse duration=12 ns) laser pulse on a polycrystalline boron nitride (PCBN) target under atmospheric air pressure. A special setup based on two synchronised wavelengths from the same laser for simultaneous processing and measurement has been used. Digital holograms were recorded for different time delays using collimated laser light (λ=532 nm) passed through the volume along the target. Numerical data of the integrated refractive index field were calculated and presented as phase maps showing the propagation of the shock wave and the plume generated by the process. Radon inversion has been used to estimate the 3D refractive index fields measured from the projections assuming rotational symmetry. The shock wave density has been calculated using the point explosion model and the shock wave condition equation and its behaviour with time at different power densities ranging from 1.4 to 9.1 GW/cm2 is presented. Shock front densities have been calculated from the reconstructed refractive index fields using the Gladstone–Dale equation. A comparison of the shock front density calculated from the reconstructed data and that calculated using the point explosion model at different time delays has been done. The comparison shows quite good agreement between the model and the experimental data. Finally the reconstructed refractive index field has been used to estimate the electron number density distribution within the laser-induced plasma. The electron number density behaviour with distance from the target at different power densities and its behaviour with time are shown. The electron number densities are found to be in the order of 1018 cm?3 and decay at a rate of 3×1015 electrons/cm3 ns.  相似文献   

12.
A novel method for simultaneous measurement of refractive index and temperature based on a small core and cladding diameters thinned fiber Mach–Zehnder interferometer (MZI) using singlemode-multimode-thinned-multimode-singlemode (SMTMS) fiber structure is proposed. Experiments indicate that the selected two interference orders have sensitivities of ?16.1936 nm/RIU and 0.0534 nm/°C, and ?23.0473 nm/RIU and 0.0575 nm/°C, respectively, among RI range from 1.3325–1.3720 and temperature range from 22 °C–82 °C. We can thus use the coefficient matrix of these two peaks to simultaneously determine the surrounding refractive index and temperature. The fabrication is easy, safe and cost effective, includes only the fusion splicing, making the device properly attractive for practical sensor applications.  相似文献   

13.
14.
The average light transmission of one-dimensional photonic media has been studied as a function of the medium homogeneity, quantified by the Shannon–Wiener index. We have found a decrease in the average light transmission by increasing the Shannon–Wiener index up to minimum (corresponding to H = 0.9375): from this point, the transmission increases following the Shannon–Wiener index. The behaviour has been confirmed for different pairs of materials forming the photonic structure. Nevertheless, we have observed that the trend slope is proportional to the refractive index ratio between the two materials (nhi/nlow).  相似文献   

15.
In this paper, two hybrid multimode/single mode fiber FabryPérot (FP) cavities were compared. The cavities fabricated by chemical etching are presented as high temperature and strain sensors. In order to produce this FP cavity a single mode fiber was spliced to a graded index multimode fiber with 62.5 μm core diameter. The FabryPérot cavities were tested as a high temperature sensor in the range between room temperature and 700 °C and as strain sensors. A reversible shift of the interferometric peaks with temperature allowed to estimate a sensitivity of 0.75 ± 0.03 pm/°C and 0.98 ± 0.04 pm/°C for the sensor A and B respectively. For strain measurement sensor A demonstrated a sensitivity of 1.85 ± 0.07 pm/μ? and sensor B showed a sensitivity of 3.14 ± 0.05 pm/μ?. The sensors demonstrated the feasibility of low cost fiber optic sensors for high temperature and strain.  相似文献   

16.
The nonlinear optical properties of Sudan I were investigated by a single beam Z-scan technique. The Sudan I ethanol solution exhibited large nonlinear refractive indices under both CW and pulse laser excitations. The nonlinear refractive indices of Sudan I were in the order of ?10?8 cm2/W under CW 633 nm excitation and ?10?6 cm2/W under CW 488 nm excitation, respectively. Under the excitation of a pulse 532 nm laser, the nonlinear refractive index n2 was calculated to be 1.19 × 10?14 cm2/W. It was discussed that the mechanism accounting for the process of nonlinear refraction was attributed to the laser heating for the CW laser excitation and the electronic effect for the pulse excitation. Moreover, the second hyperpolarizability of Sudan I was also estimated in this paper.  相似文献   

17.
To investigate the effect of annealing on the structural and optical properties of a binary compound Ga5Se95, thin films of Ga5Se95 have been deposited on quartz substrates at room temperature by the thermal evaporation technique. X-ray diffraction patterns showed that the films before and after annealing at 573 K have polycrystalline texture and exhibit tetragonal structure. The dependences of the optical constants, the refractive index n and extinction coefficient k were studied in the spectral range of 200 nm to 2500 nm. The normal dispersion of the refractive index of the films could be described using the Wemple–DiDomenco single-oscillator model. Analysis of absorption index data reveals that as-deposited Ga5Se95 films has indirect transitions with optical energy gap of 1.685 eV.  相似文献   

18.
This paper reports on a novel design for a tunable filter and plasmonic sensor based on the metal–insulator–metal waveguide with a nanocavity resonator. Simulation results show that as a one-channel filter, the resonance wavelengths show a linear red-shift with an increase in nanocavity length with a slope of 1742 nm/μm and a nonlinear blue-shift with an increase in nanocavity width, respectively. A two-channel filter can be realized using two nanocavities and the arrangement of the two nanocavities with respect to the waveguide and the value of the distance between the nanocavities has only a marginal effect on the filter notch wavelength. Finally, both in-slit and out-slit refractive index plasmonic sensors are investigated with a sensitivity of 710 nm/RIU and 250 nm/RIU, respectively.  相似文献   

19.
The performance of a simple sensor system prepared using gold (Au)-deposited glass rods of 1 to 4 mm in diameter with a deposition length of 100 mm based on surface plasmon resonance (SPR) is presented. The sensor properties of the Au-deposited glass rods of 2 mm in diameter with deposition lengths of 10 to 100 mm are also presented. The sensor system consists of a light-emitting diode (LED) as the light source and a photodiode (PD) as the detector. The response curves and sensor properties of the Au-deposited glass rod with a Au film thickness of 45 nm obtained by using three LEDs with yellowish green (563 nm), red (660 nm), and infrared (940 nm) emissions were investigated. The results were compared with those of a corresponding Au-deposited optical fiber sensor with a core diameter of 0.2 mm. Though the sensitivity, response, and detection limit of the Au-deposited glass rod sensor are lower than those of the optical fiber sensor, the fabrication and handling of the Au-deposited glass rod sensor are easier because of the robustness. Since the dielectric constant of Au changes with the light wavelength, the sensor properties of both the Au-deposited glass rod sensor and the optical fiber sensor depend strongly on the wavelength of the incident light and can be controlled by changing the LED emission wavelength. This sensor system is a new SPR-based refractometer with easy construction and operation. Ethanol concentrations in various spirits were measured with this SPR-based refractometer and the results agreed well with those measured with an Abbe refractometer.  相似文献   

20.
In this work, the 70GeS2–20In2S3–10CsI glass introduced with 0–10 mol% Ag2S were prepared by the vacuumed melt-quenching technique. The physicochemical properties, such as glass transition temperature, density, refractive index, transmittance, hardness as well as third-order nonlinearity are investigated with the increasing Ag2S contents. It was found that the refractive index (@632.8 nm), density, and hardness of glasses increase distinctly from 2.204 to 2.270, from 3.520 to 3.675 g cm−3 and from 180.9 to 227.9 kg mm−2, respectively. Meanwhile, the nonlinear refractive index increases from 3.2 × 10−18 to 4.6 × 10−18 m2/W due to the increased refractive index. Finally, the Raman spectra are performed to structurally illustrate the role of Ag addition on the changes of the physicochemical properties. With the Ag2S contents increasing, the vibration intensity of the [InS4] and [InS3I] tetrahedrons increases and the heavy Ag atoms result in the increased density and refractive index, as well as the nonlinear refractive index. The Ag-containing glass, which exhibited good thermal stability, excellent infrared transparency and ultrafast nonlinear optical properties, can be find applications for the IR window material or ultrafast infrared optics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号