首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张晓波  青芳竹  李雪松 《物理学报》2019,68(9):96801-096801
石墨烯因其优异的性能在很多领域具有广阔的应用前景.目前石墨烯薄膜主要是以铜作为催化基底,通过化学气相沉积法制备.这种方法制备的石墨烯薄膜需要被转移到目标基底上进行后续应用,而转移过程则会对石墨烯造成污染,进而影响石墨烯的性质及器件的性能.如何减少或避免污染,实现石墨烯的洁净转移,是石墨烯薄膜转移技术研究的重要课题,也是本综述的主题.本综述首先简单介绍了石墨烯的转移方法;进而重点讨论由于转移而引入的各种污染物及其对石墨烯性质的影响,以及如何抑制污染物的引入或如何将其有效地去除;最后总结了石墨烯洁净转移所存在的挑战,展望了未来的研究方向和机遇.本综述不仅有助于石墨烯薄膜转移技术的研究,对整个二维材料器件的洁净制备也将有重要参考价值.  相似文献   

2.
《Current Applied Physics》2015,15(5):563-568
We demonstrate the surface treatment of graphene using an atmospheric pressure plasma jet (APPJ) system. The graphene was synthesized by a thermal chemical vapor deposition with methane gas. A Mo foil and a SiO2 wafer covered by Ni films were employed to synthesize monolayer and mixed-layered graphene, respectively. The home-built APPJ system was ignited using nitrogen gas to functionalize the graphene surface, and we studied the effect of different treatment times and interdistance between the plasma jet and the graphene surface. After the APPJ treatment, the hydrophobic character of graphene surface changed to hydrophilic. We found that the change is due to the formation of functionalities such as hydroxyl and carboxyl groups. Furthermore, it is worth noting that the nitrogen plasma treatment induced charge doping on graphene, and the pyridinic nitrogen component in the X-ray photoelectron spectroscopy spectrum was significantly enhanced. We conclude that the atmospheric pressure plasma treatment enables controlling the graphene properties without introducing surface defects.  相似文献   

3.
We investigated the field-effect transistor (FET) characteristics of 15-μm graphene-covered copper wires (G-wires). Unlike the previously reported graphene FET, carries initially showed p-type like FET characteristics in two-terminal transport measurements. Our results indicate that the electrical transport processes in a G-wire FET occur in both the heavily p-doped contact and the p-doped radial graphene channel, as a p-channel. The interfacial potential barrier between the contact electrode and the radial graphene channel is small, but there is a radial potential barrier that limits electrical transport through the copper core in chemical vapor deposition (CVD) grown samples. The p-type FET characteristics appeared clearly after the oxidation of the G-wires.  相似文献   

4.
5.
We synthesize hexagonal shaped single-crystal graphene, with edges parallel to the zig-zag orientations, by ambient pressure CVD on polycrystalline Cu foils. We measure the electronic properties of such grains as well as of individual graphene grain boundaries, formed when two grains merged during the growth. The grain boundaries are visualized using Raman mapping of the D band intensity, and we show that individual boundaries between coalesced grains impede electrical transport in graphene and induce prominent weak localization, indicative of intervalley scattering in graphene.  相似文献   

6.
We studied the oxidation resistance of graphene-coated Cu surface and its layer dependence by directly growing monolayer graphene with different multilayer structures coexisted, di-minishing the influence induced by residue and transfer technology. It is found that the Cu surface coated with the monolayer graphene demonstrate tremendous difference in oxidation pattern and oxidation rate, compared to that coated with the bilayer graphene, which is considered to be originated from the strain-induced linear oxidation channel in monolayer graphene and the intersection of easily-oxidized directions in each layer of bilayer graphene, respectively. We reveal that the defects on the graphene basal plane but not the boundaries are the main oxidation channel for Cu surface under graphene protection. Our finding indi-cates that compared to putting forth efforts to improve the quality of monolayer graphene by reducing defects, depositing multilayer graphene directly on metal is a simple and effective way to enhance the oxidation resistance of graphene-coated metals.  相似文献   

7.
The growth of high-quality graphene on copper substrates has been intensively investigated using chemical vapor deposition (CVD). It, however, has been considered that the growth mechanism is different when graphene is synthesized using a plasma CVD. In this study, we demonstrate a dual role of hydrogen for the graphene growth on copper using an inductively coupled plasma (ICP) CVD. Hydrogen activates surface-bound carbon for the growth of high-quality monolayer graphene. In contrast, the role of an etchant is to manipulate the distribution of the graphene grains, which significantly depends on the plasma power. Atomic-resolution transmission electron microscopy study enables the mapping of graphene grains, which uncovers the distribution of grains and the number of graphene layers depending on the plasma power. In addition, the variation of electronic properties of the synthesized graphene relies on the plasma power.  相似文献   

8.
《Current Applied Physics》2015,15(10):1184-1187
To fabricate a BN-sandwiched multilayer graphene field-effect transistor, we developed a self-aligned contact scheme in combination with optimized stamping processes for the stacking of two-dimensional (2D) materials. By using a self-aligned contact method during device fabrication, we can skip the dry-etch process which requires an exact etch-stop at the surface of the graphene layer and is not easy to control. In the structure of a dual-gate transistor, successful device operation at low temperature with and without magnetic fields proves that the self-alignment contact can be an effective tool for reliable device fabrication using 2D materials.  相似文献   

9.
Laser induced reverse transfer (LIRT) has been executed first time using a Mega Hertz pulse frequency femtosecond laser radiation under ambient conditions. Research has been conducted to understand the evolution of deposited structures with regard to pulse energy. Solid deposition of gold could be deposited on quartz substrate only if pulse energy falls within a certain range. For the experiment conducted in this work, it is 36-40 nJ. For energies above this range, crests appear in the middle of the deposition. There is a threshold in maximum applicable pulse energy, 82 nJ in this exepriment, beyond which further increase in pulse energy results in only traces of deposited material. Results also show that the width of deposited line increases with the increase in pulse energy and decreases with the increase in scan speed. These observations have been explained using the dynamics of ablated plume.  相似文献   

10.
By performing the first-principles calculations, we investigated the sensitivity and selectivity of transitional metal (TM, TMSc, Ti, V, Cr and Mn) atoms doped graphene toward NO molecule. We firstly calculated the atomic structures, electronic structures and magnetic properties of TM-doped graphene, then studied the adsorptions of NO, N2 and O2 molecules on the TM-doped graphene. By comparing the change of electrical conductivity and magnetic moments after the adsorption of these molecules, we found that the Sc-, Ti- and Mn-doped graphene are the potential candidates in the applications of gas sensor for detection NO molecule.  相似文献   

11.
In this work, we investigate the possibility of enhancing the thermoelectric power (Seebeck coefficient) in graphene devices by strain and doping engineering. While a local strain can result in the misalignment of Dirac cones of different graphene sections in the k-space, doping engineering leads to their displacement in energy. By combining these two effects, we demonstrate that a conduction gap as large as a few hundred meV can be achieved and hence the enhanced Seebeck coefficient can reach a value higher than 1.4 mV/K in graphene doped heterojunctions with a locally strained area. Such hetero-channels appear to be very promising for enlarging the applications of graphene devices as in strain and thermal sensors.  相似文献   

12.
The precise control of the morphology of monolayer MoS2 is of particular importance for their potential applications and device performance. In this work, we present an experimental method to study the shape evolution of the chemical vapor deposition (CVD) grown MoS2 flakes. We observed that the morphology of monolayer MoS2 flakes transformed from truncated triangular shape to triangular shape by increasing the stoichiometric ratio of S:Mo, and consequently tailor the optical properties of MoS2 flakes. The results suggest the possibility to engineer the morphology of monolayer MoS2 by adjusting the chemical environment during growth.  相似文献   

13.
《Current Applied Physics》2014,14(9):1212-1215
This study evaluates the excellent electrochemical performance of silver (Ag)-coated graphene electrode using an electrolytic deposition technique. Ag particles are introduced to the graphene surface as a function of the applied current. A half cell of the Ag-coated graphene electrode is fabricated to examine the electrochemical performance, such as the charge–discharge behaviors, cyclic voltammetry, and specific capacitance. As a result, the electrochemical performance of the Ag-coated graphene electrode is two times higher than that of the crude graphene electrode.  相似文献   

14.
《Current Applied Physics》2020,20(10):1190-1194
A high-speed residue-free transfer method using PDMS (polydimethylsiloxane) stamp and water infiltration between graphene and a hydrophilic surface is reported. Monolayer graphene was transferred from an enhanced fluorinated Al2O3 surface using PDMS. Water infiltration dramatically reduced the time required to separate the graphene from the Al2O3 substrate to a few minutes. The graphene was then successfully transferred to a target substrate (SiO2) using the PDMS stamp. Atomic force microscopy and lateral force microscopy was used to confirm the absence of residue on the transferred graphene surface.  相似文献   

15.
《Current Applied Physics》2014,14(8):1031-1035
PbS nanostructures were grown by sulfuration of two lead sheets in a tube furnace under nitrogen (N2) and argon/hydrogen (Ar/H2) conditions. All conditions, such as the sheet temperature, sulfur powder temperature, and the carrier gas rate, were the same for two samples. Field emission scanning electron microscope (FESEM) images showed that the nanostructures with rod morphology were formed on the sheets. However, the nanorods that were grown under N2 gas, were denser, more compact, and a different shape and size in comparison to another sample. In addition, the nanorods grown under N2 gas exhibited a rectangular shape, while another sample showed nanorods that were tapered. X-ray diffraction (XRD) patterns indicated that these nanorods were PbS with a cubic phase. Furthermore, Raman measurements confirmed the XRD results, and indicated three Raman active modes of PbS phase. The optical characterization results showed a band gap for the PbS nanorods in the infrared region.  相似文献   

16.
选用CVD制备的石墨烯作为拉曼增强的基底,以激光器波长λ=532 nm的显微拉曼光谱仪对偶极分子DREP分子的石墨烯拉曼增强效应进行了探究。通过对石墨烯上与SiO2片上DREP分子的拉曼强度的对照,发现单纯DREP/SiO2分子浓度很低时,拉曼峰基本不存在,直到达到一定浓度1×10-5mol·L-1时,其拉曼峰才出现;随着浓度的增加,DREP分子的拉曼信号和荧光信号都增加;而DREP/Graphene/SiO2在1×10-7mol·L-1时即出现了拉曼信号,随着浓度的增加,拉曼信号增加很快而荧光信号增加并不明显。结果表明石墨烯可实现DREP分子的拉曼增强,并能猝灭荧光背底,提高拉曼信号与荧光信号之比。对比了不同偶极矩的DREP和DR1P分子,表明偶极矩越大,其增强因子越大,增强程度越强。分析了DREP分子在石墨烯上的拉曼增强的机制。DREP分子是尾端接芘的经过改性的偶氮苯分子,其尾端的芘与石墨烯于界面处通过π—π相互作用进行电子转移,改变石墨烯的能级结构使得其发生P型掺杂,发生拉曼增强的机制是化学机制。DREP分子的石墨烯拉曼增强效应有助于我们研究石墨烯以及石墨烯表面拉曼增强机制,比如石墨烯的载流子转移,化学增强机制的原理,以及如何从电磁机制效应分离出化学机制。  相似文献   

17.
We demonstrate electrical tunnel spin injection from a ferromagnet to graphene through a high-quality Al2O3 grown by atomic layer deposition (ALD). The graphene surface is functionalized with a self-assembled monolayer of 3,4,9,10-perylene tetracarboxylic acid (PTCA) to promote adhesion and growth of Al2O3 with a smooth surface. Using this composite tunnel barrier of ALD-Al2O3 and PTCA, a spin injection signal of ∼30 Ω has been observed from non-local magnetoresistance measurements at 45 K, revealing potentially high performance of ALD-Al2O3/PTCA tunnel barrier for spin injection into graphene.  相似文献   

18.
王刚  刘胜  潘亚峰  范红艳 《强激光与粒子束》2020,32(2):025022-1-025022-6
利用石墨烯二维材料极好的场发射能力和发射稳定性,提出了石墨烯阴极提高气体开关击穿稳定性的技术路线。采用化学气相沉积法和基底腐蚀转移法两种方法制备金属基底石墨烯薄膜阴极。利用扫描电子显微镜和拉曼光谱表征了石墨烯薄膜阴极质量,确认了石墨烯层数和均匀性。实验研究了两种石墨烯薄膜阴极气体开关,在微秒脉冲均匀电场作用下的击穿特性,获得了击穿电压幅值和分散性的变化规律。结果表明:当气体为0.6 MPa N2、电极间距为5 mm时,铜基底石墨烯薄膜阴极平均击穿电压为85.9 kV,相对标准差为3.2%;不锈钢基底石墨烯薄膜阴极平均击穿电压仅为59.8 kV,相对标准差为2.4%。当两种阴极击穿电压均为80 kV时,相对标准差比较,不锈钢基底仅为铜基底的44%。分析认为,不锈钢基底石墨烯薄膜质量优于铜基底,石墨烯薄膜导致阴极表面微观场增强因子更高,表面分布更均匀,在电场作用下场致发射产生均匀稳定的大量初始电子流,降低了气体开关击穿电压,有效提高了击穿稳定性。  相似文献   

19.
采用旋转涂膜法制备基底生长的定向碳纳米管阵列   总被引:1,自引:1,他引:0       下载免费PDF全文
 采用化学气相沉积技术,利用旋转涂膜法制备催化剂基底材料,通过对涂膜过程中的角速度、旋转时间以及基底还原过程中温度的控制改变催化剂颗粒的分布状态,获得了粒径均匀分布的催化剂基底,该基底上催化剂颗粒集中分布在47~62 nm区间,再利用该基底生长出定向碳纳米管阵列。运用扫描电镜、透射电镜、拉曼光谱仪对样品进行了表征。结果表明旋转涂膜法制备的基底平整性好于普通的滴膜法,且较其它基底制备方法具有简单易控、可使催化剂均匀分散等特点。利用该基底制备的碳纳米管阵列定向性良好。  相似文献   

20.
A series of boron-doped diamond (BDD) electrodes were prepared by direct current plasma chemical vapor deposition (DC-PCVD) with different compositions of CH4/H2/B(OCH3)3 gas mixture. A maximum growth rate of 0.65 mg cm−2 h−1 was obtained with CH4/H2/B(OCH3)3 radio of 4/190/10 and this growth condition was also a turning point for discharge plasma stability which arose from the addition of B(OCH3)3 that changed electron energy distribution and influenced the plasma reaction. The surface coating structure and electro-catalytic performance of the BDD electrodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Hall test, and electrochemical measurement and electro-catalytic oxidation in phenol solution. It is suggested that the boron doping level and the thermal stress in the films are the main factors affecting the electro-catalytic characteristics of the electrodes. Low boron doping level with CH4/H2/B(OCH3)3 ratio of 4/199/1 decreased the films electrical conductivity and its electro-catalytic activity. When the carrier concentration in the films reached around 1020 cm−3 with CH4/H2/B(OCH3)3 ratio over a range of 4/195/5-4/185/15, the thermal stress in the films was the key reason that influenced the electro-catalytic activity of the electrodes for its effect on diamond lattice expansion. Therefore, the BDD electrode with modest CH4/H2/B(OCH3)3 ratio of 4/190/10 possessed the best phenol removal efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号