首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Electronic devices with an polystyrene (PS) layer blended with Au nanoparticles capped with conjugated 2-naphthalenethiol (Au–2NT NPs) sandwiched between Au and Al electrodes exhibit bipolar resistive switches sensitive to the electrodes. This paper reports the effects of materials, including electrode materials, capping ligands of Au nanoparticles and matrix polymers, on the electrical behavior of the polymer:nanoparticle memory devices. Although the devices using Cu to replace Au as the top electrode exhibit resistive switches similar to those with Au, the threshold voltage for the resistive switch is higher, and the current density for the devices in the low conductivity state is lower. However, the threshold voltage and the current density are almost the same as those with Au as the top electrode, when a semiconductor, MoO3, is used to replace Au as the top electrode of the devices. The effects of these electrodes are attributed to the charge transfer at the contacts between Au–2NT NPs and the electrodes. The resistive switches are also sensitive to the capping organic ligand of the Au nanoparticles. The threshold voltage decreases and the current density increases, when conjugated benzenethiol is used to replace 2-naphthalenethiol. However, the current density dramatically decreases and the threshold voltage increases, when 2-benzeneethanethiol, a partially conjugated molecule, is adopted as the capping ligand of the Au nanoparticles. The effect of the capping ligands is ascribed to their effect on the charge tunneling across the Au–2NT NPs in the active layer and the contacts between Au–2NT NPs and electrodes. The devices with poly(methyl methacrylate) (PMMA) replacing PS as the polymer matrix exhibit resistive switches almost the same as those with PS, which indicates that the Au–2NT NPs rather than the polymer is the active material responsible for the resistive switches.  相似文献   

2.
《Organic Electronics》2014,15(1):322-336
Controllable bistable electrical conductivity switching behavior and resistive memory effects have been demonstrated in Al/polymer/indium-tin oxide (ITO) sandwich structure devices, constructed from non-conjugated vinyl copolymers of PTPAnOXDm with pendant donor–acceptor chromophores. The observed electrical bistability can be attributed to the field-induced intra- and intermolecular charge transfer interaction between triphenylamine electron donor (D) and oxadiazole electron acceptor (A) entities, and is highly dependent on the chemical structure of the copolymers. The vinyl copolymers showed different memory behaviors, which depended on the loading of D/A ratios. The polymers containing only donor or acceptor moieties showed as insulators, the polymers containing both donor and acceptor moieties showed as WORM, flash and DRAM as D/A ratio increased. The structural effect on the physicochemical and electronic properties of the PTPAnOXDm copolymers, viz surface morphology, thermal stability, optical absorbance and photoluminescence, and molecular orbital energy levels, were investigated systematically to study the factors that influence the memory characteristics of the devices.  相似文献   

3.
Multilevel resistive memory devices with an intermediate state were fabricated utilizing a poly(methylmethacrylate) (PMMA) layer sandwiched between double-stacked PMMA layers containing CdSe/ZnS core–shell quantum dots (QDs). The current–voltage (I–V) curves on a Al/[PMMA:CdSe/ZnS QD]/PMMA/[PMMA:CdSe/ZnS QD]/indium-tin-oxide/glass device at low applied voltages showed current bistabilities with three states, indicative of multilevel characteristics. A reliable intermediate state was realized under positive and negative applied voltages. The carrier transport and the memory mechanisms of the devices were described on the basis of the I–V curves and energy band diagrams, respectively. The write-read-erase-read-erase-read sequence of the devices showed rewritable, nonvolatile, multilevel, and memory behaviors. The currents as functions of the retention time showed that three current states were maintained for retention times larger than 1 × 104 s, indicative of the good stability of the devices.  相似文献   

4.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号