首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Nitrogen doped graphene was synthesized from graphite oxide and urea by thermal solid-state reaction. The samples were characterized by transmission electron microscopy, atomic force microscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectra, element analysis, and electrical conductivity measurement. The results reveal that there is a gradual thermal transformation of nitrogen bonding configurations from amide form nitrogen to pyrrolic, then to pyridinic, and finally to “graphitic” nitrogen in graphene sheets with increasing annealing temperature from 200 to 700 °C. The products prepared at 600 °C and 700 °C show that the quantity of nitrogen incorporated into graphene lattice is ∼10 at.% with simultaneous reduction of graphite oxide. Oxygen-containing functional groups in graphite oxide are responsible for the doping reaction to produce nitrogen doped graphene.  相似文献   

2.
采用改进的Hummers 法, 以石墨粉为原料制备氧化石墨, 然后使用微波还原法制备石墨烯, 最后以石墨烯作为负极材料组装锂离子电池. 系统的研究了高温氧化阶段中温度对氧化石墨的氧化程度、石墨烯的还原程度和比表面积以及锂离子电池性能的影响. 利用场发射扫描电镜(FESEM)、 X射线光电子能谱(XPS)、X射线衍射仪(XRD)、BET测量仪对氧化石墨和石墨烯的微观结构及比表面积等进行测试和表征. XRD, XPS及电化学测试的结果显示当高温阶段氧化温度为90 °C时, 氧化石墨的氧化程度最高, 相应的石墨烯也具有最高的还原程度和最大的比表面积423.2 m2/g, 同时石墨烯锂离子电池也具有更好的性能: 首次放电比容量为1555.5 mAh/g, 充电容量为1024.6 mAh/g, 其循环放电比容量达到600 mAh/g.  相似文献   

3.
Fe/graphite oxide nanocomposites were prepared by inserting Fe3+ into layers of graphite oxide and then reducing Fe3+/graphite oxide compound at different reduced reaction temperatures in H2. The composition, crystal structure, magnetic and microwave absorption properties of Fe/graphite oxide nanocomposites were investigated using elemental analysis, transmission electron microscope (TEM), X-ray diffraction (XRD), magnetic hysteresis curve and electromagnetic parameter analysis. The results show that the densities of samples are 2.43–2.47 g/cm3 and the nanocomposites are soft magnetic materials. The optimum reduced reaction temperature for preparing Fe/graphite oxide nanocomposites is 600 °C. With the increase of the thickness of the sample, the matching frequency tends to shift to the lower frequency region, and theoretical reflection loss becomes less at the matching frequency. Microwave absorption property of Fe/graphite oxide nanocomposites prepared at 600  °C (FeGO600) is the best. When the thickness is 1 mm, the maximum theoretical reflection loss of FeGO600 is −9 dB and the frequency region in which the maximum reflection loss is more than −6.0 dB is 11–18 GHz. In conclusion, FeGO600 is a good candidate for microwave absorbent due to its low density, wide frequency region for microwave absorption and large reflection loss.  相似文献   

4.
We herein report a synthesis nitrogen-doped graphite oxide (N-doped GO) by heat treatment with melamine. The N-doped GO contains 4 at % of nitrogen, incurring the oxygen reduction reaction by nitrogen functional groups. Two kinds of aqueous electrolytes are used for finding the electrocatalytic activities, resulting in symmetric oxygen reduction reaction peaks at −0.8 and 0 V in 6 M KOH and 1 M H2SO4 electrolytes, respectively. The N-doped GO is more activated in the acid electrolyte compared to thermally reduced graphite oxide (TrGO). Specific volumetric capacitance of N-doped GO in 1.8 M tetraethylmethylammonium tetrafluoroborate electrolyte is 57.4 F cc−1 which is higher than 30.5 F cc−1 of the TrGO, demonstrating positive effects of the nitrogen doping in the organic electrolytes for the energy storage devices.  相似文献   

5.
To improve the cycling performance of graphite anode materials, we propose a functional electrolyte additive, trimethoxymethylsilane (TMSi), which contains a silyl ether functional group as part of its molecular structure. First principal calculation studies, in addition to ex situ analyses, demonstrated that electrochemical reduction of ethylene carbonate (EC) gives an anionic reduced EC product. Subsequent chemical reaction with TMSi then generates solid-electrolyte interphase (SEI) layers of Si–O and Si–C functionalized carbonate on the surface of the graphite anode, which prolongs and stabilizes the cycling performance of the cells. As a result, the cell cycled with TMSi-controlled electrolyte exhibits a cycling retention of 89.5%, whereas the cell cycled with standard electrolyte suffers from poor cycling retention (84.3%) after 100 cycles.  相似文献   

6.
陈浩  彭同江  刘波  孙红娟  雷德会 《物理学报》2017,66(8):80701-080701
以氧化石墨凝胶制备的氧化石墨烯(GO)溶胶为前驱体,在100—350℃温度下还原获得不同还原程度的还原氧化石墨烯(rGO)样品,并采用旋涂工艺制备还原氧化石墨烯气敏薄膜元件.采用X射线衍射、拉曼光谱、傅里叶变换红外光谱和气敏测试等手段研究还原温度对样品结构、官能团和气敏性能的影响.结果表明:经热还原处理的氧化石墨烯结构向较为有序的类石墨结构转变,还原温度为200℃时,样品处于GO向rGO转变的过渡阶段,还原温度达到250℃时,则表现出还原氧化石墨烯特性;无序程度随还原温度的升高先由0.85增大至1.59,随后减小至1.41,总体呈现增加趋势;氧化石墨烯表面含氧官能团随还原温度的升高逐渐热解失去,不同含氧官能团的失去温度范围不同;热还原氧化石墨烯具有优异的室温H_2敏感性能,随着还原温度的升高,元件灵敏度逐渐减小,响应-恢复时间逐渐增大,最佳灵敏度为88.56%,响应时间为30 s.  相似文献   

7.
Frank J. Owens 《Molecular physics》2013,111(11):1280-1283
It has been proposed that reduction of exfoliated graphite oxide could be a potential method for producing large quantities of graphene. Raman and surface-enhanced Raman spectroscopy are used to show that oxidation of graphite and exfoliated graphite significantly increases the defect structure of both materials. This would likely lead to a heavily defected graphene structure when oxygen is removed. To insure the observed decomposition is not due to the laser light, the effect of laser intensity on the materials was investigated. It was found that at the highest laser intensity (1.4 × 108 W/M2) there was a significant increase in defects. However, lower laser intensity was found which did not produce defects and was used in the studies of the effect of oxidation on the spectra.  相似文献   

8.
Rhodamine B (Rh B), eosin (E) and methylene blue (MB) were used as a probe to investigate the molecular structure and charge of the dyes on the sensitized efficiency of graphite oxide (GO) and graphene (G). The structure of the prepared GO and G were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. To study the electron transfer between dyes and GO or G, UV-vis absorption spectra (UV-vis), steady state fluorescence spectra (FL) and time resolved fluorescence spectra have been determined. It has been found that the electron transfer from the excited dyes to G was more efficient than to GO, and the transfer from excited MB to G was easier than to Rh B and E, because of the different electrostatic attraction between the dye and G.  相似文献   

9.
The magnetoresistance (MR) of bulk graphite with different particle sizes is investigated. The MR of the graphite decreases with the particle size decreases. The graphite with micro-sized particles has a positive MR and exhibits positive linear field dependence of MR at about 50 K, whereas the graphite with particle size of 30.2 nm has a negative MR and exhibits negative linear field dependence of MR at about 25 K. The possible mechanism for the MR of graphite can be partially understood using ordinary MR theory, weak localization theory and diffuse scattering theory.  相似文献   

10.
A density functional theory (DFT) study of graphene synthesis from graphite oxidation and exfoliation is presented. The calculated DFT results for O adsorption predict CO as a most stable bond on the graphene oxide (GO) sheet. The obtained exfoliation energy for the graphene and the GO are 143 and ∼70 mJ/m2 that verify easier exfoliation of the graphite oxide compared with the graphite. Furthermore, the DFT results show that for decreasing the exfoliation energy of the GO at least two layers of the graphite should be oxidized during the oxidation process.  相似文献   

11.

A method of obtaining graphene oxide from Hummers-modified natural flake graphite with subsequent synthesis of reduced graphene and few-layer graphite has been suggested. The structure and electrical performance of the synthesized material have been studied. The feasibility of making a high-capacitance flexible electrode using polyethylene substrates covered by a conductive ink has been demonstrated.

  相似文献   

12.
《Current Applied Physics》2014,14(3):269-274
We have investigated the effect of argon (Ar) plasma treatment on the surface of graphite and the hydrothermal growth of zinc oxide (ZnO) microstructures. With the plasma treatment, the growth behavior of ZnO microrods on the graphite substrates changed drastically. After the graphite surface was exposed to the Ar plasma, the number density of ZnO was one order of magnitude higher than that on the pristine graphite without plasma treatment. Raman spectroscopy revealed that Ar plasma treatment created the structural defects on the graphite surfaces and decreased the mean distance of defects. Surface characterization through atomic force microscopy and X-ray photoelectron spectroscopy showed that the graphite surface was roughened and that oxygen–carbon bonding was formed. The enhanced nucleation of ZnO can be explained by the generation of structural defects, surface roughness, and surface functional groups on the graphite substrate. Therefore, Ar plasma treatment can be used as a simple method to engineer the surface properties of graphite substrates and to control the crystal nucleation and growth of inorganic materials on their surface.  相似文献   

13.
Field-effect transistor characteristics of few-layer graphenes prepared by several methods have been investigated in comparison with those of single-layer graphene prepared by the in situ reduction of single-layer graphene oxide. Ambipolar features have been observed with single-layer graphene and n-type behaviour with all the few-layer graphenes, the best characteristics being found with the graphene possessing 2–3 layers prepared by arc-discharge of graphite in hydrogen. FETs based on boron and nitrogen doped graphene show n-type and p-type behaviour respectively.  相似文献   

14.
This paper studies the absolute thickness measurement of pyrolytic graphite spheroids (GSs) by using STEM-EELS mode with log-ratio method and Kramers-Kroning (K-K) method, taking the measured thickness from TEM image as reference that is the diameter of GSs ranging from 60 to 250 nm. The effect of collection semi-angle (β) on thickness measurement has been investigated. It is found that in general the thickness obtained by K-K analysis with surface effect corrected shows the best accuracy, followed by K-K sum rule and then log-ratio method for the three different collection semi-angles of 12.4, 17.3 and 21.1 mrad applied. Of these angles, the smallest one gives an overestimated result and the largest one gives an underestimated result, whereas between the two, the angle of 17.3 mrad that is about 2x convergence semi-angle (9.0 mrad) is identified as more appropriate for K-K analysis. The surface-scattering correction, inelastic mean free path of GS and effect of refractive index n on thickness measurement for different β angles are also investigated. Moreover, the optical property deduced from the data collected at the center of graphite spheroid, which is related to its microstructure, is characterized by K-K analysis.  相似文献   

15.
The electrochemical corrosion of graphite in industrial phosphoric acid solutions was studied using polarisation curves analysis, cyclic voltammetry, MEB-EDS and secondary ions mass spectroscopy (SIMS). The polarisation curves indicated that graphite has a passive behaviour and the increase of temperature induces an increase of the corrosion rate and the passive current density. The cyclic voltammetry analysis was performed to verify the surface phenomenon of graphite surface and confirmed the role of adsorption oxygen in material corrosion. Spectroscopic analysis (EDS and SIMS) showed that the majority of industrial phosphoric acid impurities were present in the graphite composition indicating that metallic oxides are not the only components of this layer. The presence of these impurities on the graphite induces an increase of corrosion by swelling, exfoliation and cracking.  相似文献   

16.
《Current Applied Physics》2015,15(6):706-710
We have investigated the resistive switching mechanism in solution processed Au-reduced graphene oxide-polyvinyl alcohol (PVA) nanocomposites on flexible substrates. Monodispersed gold nanoparticles (Au NPs) attached to reduced graphene oxide (RGO) in aqueous PVA solution have been synthesized using a novel one pot technique. The fabricated hybrid device showed high On/Off switching ratio more than 103 with low operating voltages. The performance of hybrid device can be effectively enhanced over control RGO device. The switching mechanism occurs from the electrochemical reduction/oxidation process of partially reduced graphene oxide. The proposed devices reveal superior asymmetric bipolar resistive switching characteristics attractive for solution processable flexible and transparent non-volatile memory applications.  相似文献   

17.
Y. H. Ding  W. Xie  P. Zhang 《Ionics》2016,22(7):1021-1026
LiFePO4/graphene composites have been prepared by using tailoring graphene oxide (GO) nanosheets as precursors. The structure and electrochemical properties of the composites were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman microscopy, and a variety of electrochemical testing techniques. The decrease in graphene size reduces the contact resistance between activated materials, and enhances the lithium-ion transport in LiFePO4/graphene composites. With low weight fractions of small-size graphene sheets, the composites show better electrochemical performance than those with large size graphene sheets.  相似文献   

18.
Poly(3-hexylthiophene) (P3HT)/graphene nanocomposites were facilely prepared via an in situ reduction of modified graphite oxide (mGO) in the presence of P3HT. The chemical and aggregated structures of the P3HT/mGO nanocomposites were successfully characterized by means of atomic force microscope (AFM), transmission electron microscope (TEM), photoluminescence (PL), Raman spectra, X-ray photoelectron spectroscopy (XPS) and UV-vis measurements. Coated by P3HT, reduced modified graphite oxide (re-mGO) could significantly improve their processing problem in common organic solvent. It was shown that P3HT chains were attached to re-mGO sheets closely and there existed the pi-pi interaction between P3HT and re-mGO. The P3HT/mGO nanocomposites exhibited good dispersion in chloroform and show high storage stability (>20 days). This finding provides an efficient method for fabricating a light energy conversion materials with new optical and electrical properties, combining excellent mechanics, heat-stabilization properties of graphene and excellent optical, electrical, processing and film forming properties of soluble polythiophene materials.  相似文献   

19.
A method is proposed to produce large-area single-layer graphene oxide films on the surface of semiconductor silicon wafers by precipitation from aqueous suspensions. Graphene oxide is synthesized from natural crystalline graphite during chemical oxidation and represents a wide-gap insulator. Single-layer graphene with a homogeneous-fragment size up to 50 μm can be formed by the reduction of graphene oxide films, and this size is significantly larger than those achieved to date.  相似文献   

20.
The high contact resistance of organic thin film transistors (OTFTs), due to the work function difference between metal electrode and organic channel, seriously decreases the electrical properties. Graphene electrode could reduce the contact resistance and improve the electrical performance of OTFTs. However, the high chemical vapor deposition (CVD) temperature (900–1000 °C) limits the available OTFT substrate in the case of direct graphene growth on S/D metal electrodes. Furthermore, the application of a transferred graphene electrode induces significant problems due to the transfer process. In this work, thin graphite sheet was directly grown on a metal electrode by the inductively coupled plasma-chemical vapor deposition (ICP-CVD) method at as low temperature as 400, 500 °C. We show that OFETs with thin graphite sheet/metal, grown at 400, 500 °C, exhibit much lower contact resistance than OFETs with metal-only electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号