首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ce, Cu co-doped ZnO (Zn1−2xCexCuxO: x=0.00, 0.01, 0.02, 0.03, 0.04 and 0.05) nanocrystals were synthesized by a microwave combustion method. These nanocrystals were investigated by using X-ray diffraction (XRD), UV–visible diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The stability and magnetic properties of Ce and Cu co-doped ZnO were probed by first principle calculations. XRD results revealed that all the compositions are single crystalline. hexagonal wurtzite structure. The optical band gap of pure ZnO was found to be 3.22 eV, and it decreased from 3.15 to 3.10 eV with an increase in the concentration of Cu and Ce content. The morphologies of Ce and Cu co-doped ZnO samples confirmed the formation of nanocrystals with an average grain size ranging from 70 to 150 nm. The magnetization measurement results affirmed the antiferro and ferromagnetic state for Ce and Cu co-doped ZnO samples and this is in agreement with the first principles theoretical calculations.  相似文献   

2.
A series of nano-sized single phase W-type SrGaxZn2Fe16?xO27 (x = 0.0, 0.1, 0.2, 0.3, 0.4) hexaferrites prepared by sol gel technique and sintered at 950 °C have been investigated. The thermal decomposition behavior of nitrate–citrate gel of as prepared powder was investigated by means of DTA/TGA analysis. The sintered powders were characterized by FTIR, XRD, SEM, VSM and vector network analyzer (VNA). X-ray diffraction patterns for pure and substituted W-type hexaferrites show the single phase structure with no impurity phase. The lattice parameters (a and c) decrease with the increase of Ga contents (x). The grain size estimated from SEM images is in the range of 139–76 nm which confirms the nanocrystalline nature of the investigated samples. The saturation magnetization (Ms) decreases whereas coercivity (Hc) increases with the increase of Ga contents (x). The values of Hc for all of the investigated samples lie in the range of few hundred oersteds which is one of the necessary conditions for EM materials. The microwave absorption property is enhanced in the frequency (with respect to ?20 dB) from 0.5 to 13 GHz, and the bandwidth reaches 0.899 GHz. The attenuation peak value is ?32 dB at the matching thickness of 3.4 mm.  相似文献   

3.
This work correlates the magnetic properties to the microstructure of the calcined nanocrystalline CdxCo1-xZr0.05Fe1.95O4 (0.0 ≤ x ≤ 0.3 in a step of 0.05) powders produced by Pechini sol–gel method. The dry gel was grinded and calcined at 700 °C in a static air atmosphere for 1 h. The thermal decomposition process of dried gel was studied by thermo gravimetric analysis (TGA) combined with differential analysis (DTA). Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and vibrating sample magnetometer (VSM) were carried out to investigate the structural bonds identification, crystallographic properties, morphology and magnetic properties of the obtained powders. The XRD pattern of the samples showed that the synthesized materials were of a single cubic phase with the nanocrystalline Co–Zr–Cd ferrite which had an average crystallite size of 32–40 nm and particle size of 55 nm resulted from FE-SEM. The magnetic properties were measured from the hysteresis loops. The magnetic measurements had indicated that the coercivity and the magnetization decreased by increasing the Cd content.  相似文献   

4.
Zn0.98−xCuxV0.02O (x=0, 0.01, 0.02 and 0.03) samples were synthesized by the sol–gel technology to dope up to 3% Cu in ZnO. Investigations of structural, optical and magnetic properties of the samples have been done. The results of X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) indicated that the V and Cu ions were incorporated into the crystal lattices of ZnO. With Cu doping concentration increasing up to 2 at%, the XRD results showed that all diffraction peaks corresponded to the wurtzite structure of ZnO. Photoluminescence (PL) measurements showed that Zn0.98−xCuxV0.02O powders exhibited that the position of the ultraviolet (UV) emission peak of the samples showed an obvious red-shift and the green emission peak enhanced significantly with Cu doping in ZnVO nanoparticle. Magnetic measurements indicated that room temperature ferromagnetism (RTFM) of Zn0.98−xCuxV0.02O was an intrinsic property when Cu concentration was less than 3 at%. The saturation magnetization (Ms) of Zn0.98−xCuxV0.02O (x=0, 0.01 and 0.02) increased with the increase of the Cu concentration.  相似文献   

5.
Monodisperse Mn-Zn ferrite (Mn1−xZnxFe2O4) nanospheres have been prepared via a simple solvothermal method. The as-synthesized samples were characterized in detail by X-ray diffraction pattern (XRD), transmission electron microscope (TEM), high-solution transmission electron microscope (HRTEM), select area electron diffraction pattern (SAED), scanning electron microscope (SEM), and vibrating sample magnetometer (VSM). The results show that a large number of the high-purity Mn1−xZnxFe2O4 nanocrystallites were synthesized and these nanocrystallites oriented aggregated to nanospheres. The dependence of magnetic properties of Mn1−xZnxFe2O4 nanospheres on the composition content x of Zn was studied. The maximum saturation magnetization value of the as-prepared sample (Mn0.6Zn0.4Fe2O4) reached 52.4 emu g−1.  相似文献   

6.
Nanoparticles of Li0.1(Ni1−xZnx)0.8Fe2.1O4 with x varying from 0.0 to 1.0 were prepared by chemical co-precipitation method. A part of these samples was sintered at 1200 °C for 2 h to obtain bulk samples via increase in particle sizes; the other part was left as-prepared. Structural and magnetic properties comparison studies were carried out between the as-prepared nanoparticle samples and their bulk counterparts. The X-ray diffraction and infrared spectroscopy were used to characterize the samples. The XRD pattern of the samples provides evidence of single phase formation of spinel structure with cubic symmetry. The lattice constant, and X-ray density were calculated from the XRD data. The density of the samples was measured and consequently the porosity was calculated too. In the present work, the effect of nano-structured particle size and Zn concentration on parameters such as bond length and vibration frequency are discussed with the help of the IR data. The B-H loops of all samples obtained by using vibrating sample magnetometer (VSM) are displayed. The reduction of saturation magnetization of the nano-structured samples in comparison with their bulk counterparts and the effect of Zn addition on saturation magnetization of all the samples are discussed.  相似文献   

7.
Bi3+ substituted garnet nanoparticles Y3−xBixFe5O12 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.3) were fabricated by a sol–gel method and their crystalline structures and magnetic properties were investigated by using X-ray diffraction (XRD), IR spectroscopy, thermal gravity analysis–differential thermal analysis (TG-DTA), transmission electron microscope (TEM), Mössbauer spectroscopy and vibrating sample magnetometer (VSM). The XRD patterns of Y3−xBixFe5O12 have only peaks of the garnet structure. From the results of VSM, it is shown that the saturation magnetization of sample is decreased with increasing the content of Bi ions. Meanwhile, it is observed that with the enhancement of the single magnetic domains surface spin effects, the saturation magnetization is raised as the particle size of samples is increased.  相似文献   

8.
Lightly doped La2−xSrxCuO4 (x = 0.04) nanoparticles with different particle sizes have been successfully prepared by a sol–gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared transmission (IR) spectra and superconducting quantum interference device (SQUID) magnetometer. All samples are single phase and have an orthorhombic unit cell. As the particle size reduces, it is found that the IR band at around 685 cm−1 corresponding to the in-plane Cu–O asymmetrical stretching mode shifts to higher frequency and the magnetization exhibits a large enhancement at low temperature. The magnetic susceptibility of all samples follows a modulated Curie law between ∼20 K and ∼100 K and the Curie constant displays a strong dependence on the particle size. It is suggested that as the particle size decreases surface effects should play an important role in the magnetic properties of the nanoparticles.  相似文献   

9.
The influences of Mn doping on the structural quality of the ZnxMn1−xO:N alloy films have been investigated by XRD. Chemical compositions of the samples (Zn and Mn content) and their valence states were determined by X-ray photoelectron spectrometry (XPS). Hall effect measurements versus temperature for ZnxMn1−xO:N samples have been designed and studied in detail. The ferromagnetic transitions happened at different TC should explain that the magnetic transition in field-cooled magnetization of Zn1−xMnxO:N films at low temperature is caused by the strong p-d exchange interactions besides magnetic transition at 46 K resulting from Mn oxide, and that the room temperature ferromagnetic signatures are attributed to the uncompensated spins at the surface of anti-ferromagnetic nano-crystal of Mn-related Zn(Mn)O.  相似文献   

10.
Nickel Cadmium Aluminum Ferrites with the general formula Ni1−xCdxAl0.6Fe1.4O4 where x=0, 0.25, 0.50 and 0.75 were prepared through standard double sintering reaction method. The crystallography, surface morphology and magnetic properties were studied by X-ray diffractometer (XRD), Scanning Electron Microscope (SEM) and Vibrating Sample Magnetometer (VSM), respectively. The expected single phase spinel structure was confirmed by XRD analysis. Lattice parameter and X-ray density were increased monotonically by increasing Cd concentration due to the larger ionic radii of the cadmium ion. Surface topography of the samples consists of fine cubical shape microstructures. The average grain size increased with increase in cadmium concentration. The saturation magnetization was found to be increased with increase in cadmium content up to x=0.50 and then decreased with further increasing cadmium concentration for x=0.75.  相似文献   

11.
This work investigates the effect of NaF on optical and structural properties of nano crystalline CdxZn1?xS films. The CdxZn1?xS films are prepared through chemical bath deposition (CBD) technique in aqueous alkaline bath and their subsequent condensation on substrates. The as-obtained samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–VIS absorption spectroscopy. Micro structural features, obtained from XRD analysis confirm the formation of cubic phase of undoped as well as NaF doped CdxZn1?xS nano particles while SEM observations depict non-uniform distribution of grains. These results show the average grain size of pure as well as NaF doped samples to range from 50 to 90 nm. Tauc's plots, extracted from absorption spectra exhibit absorption to be dominating mainly in blue-green region of visible spectrum. The room-temperature photoluminescence (PL) spectra of CdxZn1?xS samples show a peak around 425 nm, which gets blue shifted for doped sample indicating improvement in PL properties on its addition.  相似文献   

12.
SrFe12−x(Sn0.5Zn0.5)xO19 thin films with x=0−5 were synthesized by a sol-gel method on thermally oxidized silicon wafer (Si/SiO2). The site preference and magnetic properties of Zn-Sn substituted strontium ferrite thin films were studied using 57Fe Mössbauer spectroscopy and magnetic measurements. Mössbauer spectra displayed that the Zn-Sn ions preferentially occupy the 2b and 4f2 sites. The preference for these sites is responsible for the anomalous increase in the magnetization at high Zn-Sn substitutions. X-ray diffraction (XRD) patterns and field emission scanning electron microscope (FE-SEM) micrographs demonstrated that single phase c-axis hexagonal ferrite films with rather narrow grain size distribution were obtained. Vibrating sample magnetometer (VSM) was employed to probe magnetic properties of samples. The maximum saturation of magnetization and coercivity at perpendicular direction were 265 emu/g and 6.3 kOe, respectively. It was found that the complex susceptibility has linear variation with static magnetic field.  相似文献   

13.
A series of samples ZnxFe3−xO4 have been prepared by the chemical coprecipitation technique and characterized by X-ray diffraction (XRD), vibrating sample magnetometry (VSM) and X-ray photoelectron spectroscopy (XPS). XRD demonstrates all the samples of ZnxFe3−xO4 have a spinel structure same as Fe3O4. The magnetic hysteresis loops of ZnxFe3−xO4 obtained from VSM indicate that the saturation magnetization has a maximum when x is ∼1/3. The chemical states of Fe atoms and Zn atoms in zinc ferrites have been measured using XPS and Auger electron spectroscopy (AES). The Fe 2p core-level XPS spectra and Zn L3M45M45 Auger peaks have been analyzed and the results have been discussed in correlation with the samples’ magnetic properties. These results suggest most of Zn atoms occupy the tetrahedral sites and a small amount of them occupy the octahedral sites.  相似文献   

14.
Control on the size of copper oxide (CuO) in the nano range is a highly motivating approach to study its multifunctional nature. The present investigation reports a sol-gel derived Ni doped CuO nanoparticles (Cu1-xNixO). Rietveld refinement of the XRD spectra confirms the formation of single monoclinic phase of Cu1-xNixO nanoparticles having crystallite size within the range of 19–21 nm. Raman spectra show the presence of characteristics Raman active modes and vibrational bands in the Cu1-xNixO samples that corroborate the monoclinic phase of the samples as revealed by refinement of XRD data. The estimated band gap of pure CuO is found to be ∼1.43 eV, which decreases with the increase of dopant concentration into CuO matrix. This result is in line with estimated crystallite size. Magnetization curves confirm the weak ferromagnetic nature of Cu1-xNixO nanoparticles which reveal the DMS phase. This weak magnetic nature may be induced in the samples due to the exchange interaction between the localized magnetic d-spins of Ni ions and carriers (holes or electrons) from the valence band of pristine CuO lattice. Replacement of Cu+2 by Ni+2 ions into the host CuO lattice induces the magnetization. The quantified value of squareness ratio (S < 0.5) confirms the inter-grain magnetic interactions in the Cu1-xNixO nanoparticles which is also the reason of weak induced magnetization.  相似文献   

15.
Cobalt ferrite nanoparticles having the chemical formula CoFe2−2xZrxZnxO4 with x ranging from 0.0 to 0.4 were prepared by chemical co-precipitation method. The powder X-ray diffraction pattern confirms the spinel structure for the prepared compound. The particle size was calculated from the most intense peak (3 1 1) using Scherrer formula. The particle size of the samples was found within the range of 12–23 nm for all the compositions. The magnetic and electrical properties of these materials have been studied as a function of temperature. Activation energy and drift mobility have been calculated from the DC electrical resistivity measurements. Dielectric properties such as dielectric constant and dielectric loss tangent were measured at room temperature in the frequency range 100 Hz–1 MHz.  相似文献   

16.
《Current Applied Physics》2020,20(9):1019-1025
(Li1+, Al3+) co-doped Ni0.5Zn0.5Fe2O4 ferrites, Ni0.5-xZn0.5-xLixAlxFe2O4 (x = 0.000, 0.025, 0.050 and 0.100), were synthesized by the sol-gel auto-combustion method. X-ray diffraction (XRD), field emission scanning electronic microscope (FESEM), vibrating sample magnetometer (VSM) and LCR meter were used to investigate the structural, magnetic and dielectric properties. Results of XRD and SEM indicate that both doping amount and calcination temperature play significant roles in crystal structure and grain growth. Also, it can be observed that the saturation magnetization and the coercivity change in a noticeable manner. The Ni0.475Zn0.475Li0.025Al0.025Fe2O4 ferrite sintered at 1200 °C has a relatively low coercivity value (62.93 Oe) and the largest saturation magnetization (110.95 emu/g). Besides, dielectric behavior is also improved by Li1+ and Al3+ co-doping.  相似文献   

17.
SrFe12−x(Zr0.5Mg0.5)xO19 nanoparticles and thin films with x=0-2.5 were synthesized by a sol-gel method on thermally oxidized silicon wafer (Si/SiO2). Structural and magnetic characteristics of synthesized samples were studied employing x-rays diffraction (XRD), transmission electron microscopy (TEM), magnetic susceptometer, atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and vibrating sample magnetometer (VSM). TEM micrographs display that the narrow size distribution of ferrite nanoparticles with average particle size of 50 nm were fabricated. Fitting obtained data of effective magnetic susceptibility by Vogel-Fulcher law confirms the existence of strong magnetic interaction among fine particles. XRD patterns and FE-SEM micrographs demonstrated that single phase c-axis hexagonal ferrite films with rather narrow grain size distribution were obtained. AFM micrographs exhibited that the surface roughness increases with an increase in Zr-Mg content. It was found from the VSM graphs that with an increase in substitution contents the coercivity decreases, while the saturation of magnetization increases. The Henkle plots confirms the existence of exchange coupling among nano-grain in ferrite thin films.  相似文献   

18.
In this study, a powder mixture of Zn, Fe2O3 and NiO was used to produce different compositions of Ni1−xZnxFe2O4 (x=0.36, 0.5 and 0.64) nanopowders. High-energy ball milling with a subsequent heat treatment method was carried out. The XRD results indicated that for the content of Zn, x=0.64 a single phase of Ni–Zn ferrite was produced after 30 h milling while for the contents of Zn, x=0.36 and 0.5, the desired ferrite was formed after sintering the 30 h-milled powders at 500 °C. The average crystallite size decreased with increase in the Zn content. A DC electrical resistivity of the Ni–Zn ferrite, however, decreased with increase in the Zn content, its value was much higher than those samples prepared by the conventional ceramic route by using ZnO instead of Zn. This is attributed to smaller grains size which were obtained by using Zn. The FT-IR results suggested two absorption bands for octahedral and tetrahedral sites in the range of 350–700 cm−1. The VSM results revealed that by increasing the Zn content from 0.36 to 0.5, a saturation magnetization reached its maximum value; afterwards, a decrease was observed for Zn with x=0.64. Finally, magnetic permeability and dielectric permittivity were studied by using vector network analyzer to explore microwave-absorbing properties in X-band frequency. The minimum reflection loss value obtained for Ni0.5Zn0.5Fe2O4 samples, about −34 dB at 9.7 GHz, making them the best candidates for high frequency applications.  相似文献   

19.
The present work reports on the synthesis of the Zn1?xMgxO (x = 0, 0.02, 0.05, 0.10, 0.15 and 0.20) samples by sol–gel method and the investigations on their structural, morphological and optical properties. X-ray diffraction (XRD) data analysis confirms the formation of pure ZnO phase below 10% Mg doping and MgO related phases appears in 10% doped sample indicating that phase segregation of MgO starts at x ≥ 0.10 samples. The phase segregation observed through XRD analysis is also supported by results from Scanning Electron Microscopy (SEM), Raman spectroscopy and photoluminescence studies. Furthermore, the enhancement in optical band gap, with Mg doping, from 3.1 ± 0.1 eV to 3.5 ± 0.1 eV has been observed through UV–Vis spectroscopic analysis. Above results have been discussed on the basis of defects level observed through Raman and photoluminscence studies.  相似文献   

20.
《Solid State Ionics》2009,180(40):1613-1619
Materials of the LiTi2  xZrx(PO4)3 series (0  x  2) were prepared and characterized by powder X-ray (XRD) and neutron diffraction (ND), 7Li and 31P Nuclear Magnetic Resonance (NMR) and Electric Impedance techniques. In samples with x < 1.8, XRD patterns were indexed with the rhombohedral Rc space group, but in samples with x  1.8, XRD patterns display the presence of rhombohedral and triclinic phases. The Rietveld analysis of the LiTi1.4Zr0.6(PO4)3 neutron diffraction (ND) pattern provided structural information about intermediate compositions. For low Zr contents, compositions deduced from 31P MAS-NMR spectra are similar to nominal ones, indicating that Zr4+ and Ti4+ cations are randomly distributed in the NASICON structure. At increasing Zr contents, differences between nominal and deduced compositions become significant, indicating some Zr segregation in the triclinic phase. The substitution of Ti4+ by Zr4+ stabilizes the rhombohedral phase; however, electrical performances are not improved in expanded networks of Zr-rich samples. Below 300 K, activation energy of all samples is near 0.36 eV; however, above 300 K, activation energy is near 0.23 eV in Ti-rich samples and close to 0.36 eV in Zr-rich samples. The analysis of electrical data suggests that the amount of charge carriers and entropic terms are higher in Zr-rich samples; however, the increment of both parameters does not compensate lower activation energy terms of these samples. As a consequence of different contributions, the bulk conductivity of Zr-rich samples, measured at room temperature, is one order of magnitude lower than that measured in Ti-rich samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号