首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon aerogel (CA) was prepared by a sol-gel polymerization of resorcinol and formaldehyde, and it was activated with KOH to obtain activated carbon aerogel (ACA). Specific capacitance of carbon aerogel and activated carbon aerogel was measured by cyclic voltammetry and galvanostatic charge/discharge methods in 6 M KOH electrolyte. Activated carbon aerogel showed higher specific capacitance than carbon aerogel (136 F/g vs. 90 F/g). In order to combine excellent electrochemical performance of activated carbon aerogel with pseudocapacitive property of manganese oxide, 7 wt% manganese oxide was doped on activated carbon aerogel by an incipient wetness impregnation method. For comparison, 7 wt% manganese oxide was also doped on carbon aerogel by an incipient wetness impregnation method. It was revealed that 7 wt% Mn-doped activated carbon aerogel (Mn/ACA) showed higher specific capacitance than 7 wt% Mn-doped carbon aerogel (Mn/CA) (168 F/g vs. 98 F/g). The enhanced capacitance of 7 wt% Mn-doped activated carbon aerogel was attributed to the outstanding electric properties of activated carbon aerogel as well as the faradaic redox reactions of manganese oxide.  相似文献   

2.
Potato starch-based activated carbon spheres (PACS) were prepared from potato starch by stabilization, carbonization followed by activation with KOH. The obtained PACS are hollow and retain the original morphology of potato starch with decrease in size, as shown by scanning electron microscopy. Modification of textural properties of the PACS was achieved by varying the carbonization temperature and the ratio of KOH/PCS. The results of N2 adsorption isotherms indicate that the samples prepared are mainly microporous. The electrochemical behaviors of the hollow PACS were studied by galvanostatic charge-discharge, cyclic voltammetry, and impedance spectroscopy. The results indicate that high specific capacitance of 335 F/g is obtained at current density 50 mA/g for PACS with specific surface area 2342 m2/g. Only a slight decrease in capacitance, to 314 F/g, was observed when the current density increases to 1000 mA/g, indicating a stable electrochemical property.  相似文献   

3.
An isotropic pitch and an anisotropic pitch with similar softening point were chosen to be precursors for activated carbons (ISO and ANISO, respectively). Chemical activations with same conditions were carried out and the effects of microstructure of precursors on characteristics of activated carbons were discussed. Isotropic pitch with more noncrystallite carbon atoms or edge carbon atoms on the microstructural defects had more reactive ability and more pores were manufactured through sufficient chemical activation. Electric double-layer capacitors (EDLC) were made with the two activated carbons as electrode materials and 1 M Et4NBF4/PC as the electrolyte. The performance of EDLC with the ISO has higher specific capacitance (43.5 F g−1) than the ANISO (21.3 F g−1) and has better power performance and lower resistance than the latter.  相似文献   

4.
《Current Applied Physics》2020,20(1):106-113
This study discusses the influence of different composition of negative electrode material on the performance of Ni-MH cells. Two major groups of multicomponent alloys were used during the experiments: AB5 and AB2 types. The best capacity was observed for the AB5-type alloy with the highest content of Co in its structure. The presence of Co in the alloy increased the capacity of the negative electrode most likely as a result of hydriding/dehydriding processes or Faradaic reaction following the dissolution-precipitation mechanism. The influence of different amounts of nickel (0–20 wt%) was determined. The presence of nickel in the electrode materials increased the current density as well as the diffusion of hydrogen into the bulk of alloys. Moreover, the carbon materials have been used as an additive for negative electrode grains in order to increase the conductivity and hydrogen sorption properties.  相似文献   

5.
《Ultrasonics sonochemistry》2014,21(6):1933-1938
In this study, manganese oxide (MnO2) nanoparticles were synthesized by sonochemical reduction of KMnO4 using polyethylene glycol (PEG) as a reducing agent as well as structure directing agent under room temperature in short duration of time and characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) analysis. A supercapacitor device constructed using the ultrasonically-synthesized MnO2 nanoparticles showed maximum specific capacitance (SC) of 282 Fg−1 in the presence of 1 M Ca(NO3)2 as an electrolyte at a current density of 0.5 mA cm−2 in the potential range from 0.0 to 1.0 V and about 78% of specific capacitance was retained even after 1000 cycles indicating its high electrochemical stability.  相似文献   

6.
Carbon aerogel (CA) was prepared by a sol-gel polymerization of resorcinol and formaldehyde, and a series of activated carbon aerogels (ACA-X, X = H3PO4, K2CO3, KOH, and ZnCl2) were then prepared by a chemical activation using different activation agent (X represented an activation agent). Specific capacitances of activated carbon aerogels were measured by cyclic voltammetry and galvanostatic charge/discharge methods in 6 M KOH electrolyte. Among the samples prepared, ACA-K2CO3 showed the highest specific capacitance (152 F/g). In order to combine excellent electrochemical performance of activated carbon aerogel with pseudo-capacitive property of manganese oxide, 7 wt% manganese oxide was doped on activated carbon aerogels (Mn/ACA-X) by an incipient wetness impregnation method. Capacitance measurements revealed that Mn/ACA-K2CO3 showed the highest specific capacitance (189 F/g). The enhanced capacitance of Mn/ACA-K2CO3 was attributed to the fine pore structure and outstanding electric properties of activated carbon aerogel as well as the faradaic redox reactions of manganese oxide.  相似文献   

7.
In this study, a symmetric electrochemical capacitor was fabricated by adopting a lithium iron phosphate (LiFePO4)-activated carbon (AC) composite as the core electrode material in 1.0 M Na2SO3 and 1.0 M Li2SO4 aqueous electrolyte solutions. The composite electrodes were prepared via a facile mechanical mixing process. The structural properties of the nanocomposite electrodes were characterised by scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET) analysis. The electrochemical performances of the prepared composite electrode were studied using cyclic voltammetry (CV), galvanostatic charge–discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that a maximum specific capacitance of 112.41 F/g was obtained a 40 wt% LiFePO4 loading on an AC electrode compared with that of a pure AC electrode (76.24 F/g) in 1 M Na2SO3. The improvement in the capacitive performance of the 40 wt% LiFePO4–AC composite electrode is believed to be attributed to the contribution of the synergistic effect of the electric double layer capacitance (EDLC) of the AC electrode and pseudocapacitance via the intercalation/extraction of H+, OH, Na+ and SO32− and Li+ ions in LiFePO4 lattices. In contrast, it appears that the incorporation of LiFePO4 into AC electrodes does not increase the charge storage capability when Li2SO4 is used as the electrolyte. This behaviour can be explained by the fact that the electrolyte system containing SO42− only exhibits EDLC in the Fe-based electrodes. Additionally, Li+ ions that have lower conductivity and mobility may lead to poorer charge storage capability compared to Na+ ions. Overall, the results reveal that the AC composite electrodes with 40 wt% LiFePO4 loading on a Na2SO3 neutral electrolyte exhibit high cycling stability and reversibility and thus display great potential for electrochemical capacitor applications.  相似文献   

8.
Abstract

High performance electrodes for supercapacitor usually are achieved by compositing conductive and redox materials, the former such as multi-walled carbon nanotubes (MWCNTs), graphene, etc., provide the electrical double-layer capacitances that far less than pseudo-capacitances of the later (metal oxide, polyaniline, and so on). Here, carbonaceous composite electrode of MWCNTs and the redox electrolyte are combined into an electrochemical system for high synergetic effect of capacitance. MWCNT is activated by acid treatment and its structures are characterized by scanning electron microscope, X-ray diffraction, and Infrared spectroscopy analyses. The electrochemical measurements of resultant electrodes showed an excellent synergetic effect. The acid-activated MWCNTs electrode exhibited the maximum specific capacitance of 682 F/g in 0.2 M KI redox electrolytes, which is about 2–20 times larger than MWCNTs and its composite electrode in universal electrolyte without KI.  相似文献   

9.
This study investigates the use of graphene oxides (GOs) and carbon nanotubes (CNTs) embedded in polyacrylonitrile-based carbon nanofibers (GO–CNT/CNF) as electrodes for the supercapacitor. GO–CNT/CNF was prepared by electrospinning, and was subsequently stabilized and activated. The specific capacitance of GO–CNT/CNF is 120.5 F g−1 in 0.5 M Na2SO4 electrolyte, which is higher than or comparable to the specific capacitances of carbon-based materials in neutral aqueous electrolyte, as prepared in this study. GO–CNT/CNF also exhibits a superior cycling stability, and 109% of the initial specific capacitance after 5000 cycles. The high capacitance of GO–CNT/CNF could be attributed to the edge planes and the functional groups of GO, the highly electrical conductivity of CNT, and the network structure of the electrode.  相似文献   

10.
In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer–Emmett–Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.  相似文献   

11.
《Current Applied Physics》2015,15(4):567-570
In this work, lithium-modified silica nanosalt (Li202) is solution-synthesized and used as a gel-forming additive in 1.5 M tetraethylammonium tetrafluoroborate (TEABF4)/acetonitrile (ACN) electrolyte solution for the supercapacitor with activated carbon electrode. The electrochemical properties of the supercapacitor adopting the Li202 (5 wt.%) are investigated using linear sweep voltammetry, cyclic voltammetry, and complex impedance spectroscopy. By the addition of the Li202, the electrochemical stability of the electrolyte is improved over 4.0 V (corresponding to the current density below 0.6 mA cm−2) and higher specific capacitances at the scan rates of 10–500 mV s−1 are obtained. Thus, the Li202 can be considered as a promising electrolyte additive to enhance the supercapacitive properties of activated carbon electrode.  相似文献   

12.
Sm-doped Ceria (SDC) electrolyte film was successfully fabricated on anode substrate of NiO-SDC by screen-printing. Some technical parameters for fabrication were investigated and optimized, including printing times, ink composition and sintering temperature. Scanning electron microscope (SEM) measurement was done to check the microstructures of SDC film and single cell. The parameters greatly affected the quality of SDC film and cell performance. The single cell with the optimum parameters exhibited an OCV of 0.82 V and a power density of 0.5 W/cm2 at 600 °C.  相似文献   

13.
A novel efficient (Φ=0.44) organic yellow-emitting dye, 3-(4-(diphenylamino)phenyl)-1-phenylprop-2-en-1-one (DPPO), was synthesized. The compound was characterized by means of 1H NMR and differential scanning calorimetry (DSC) and analyzed by quantum chemistry method. It was found that DPPO could be effectively excited by the InGaN-based blue LED. Photo-durability data of DPPO were studied. Bright white light of Commission International del’ Eclairage (CIE) x=0.30, y=0.33 was obtained by using DPPO as a light color-conversion material (CCM).  相似文献   

14.
《Current Applied Physics》2018,18(4):397-404
In the present work flower like Mn-Co mixed metal oxide electrode materials were successfully synthesized by simple, low cost electrodeposition method on stainless steel substrates. Different volume ratio of Mn-Co was used to attempt enhancement in the supercapacitive properties of electrode material. Structural, morphological and wettability properties of synthesized electrodes were carried out using XRD, RAMAN, FE-SEM and Contact Angle Measurement techniques. Electrochemical properties of electrodeposited Mn-Co mixed metal oxide at three different volume variation such as 50-50, 60-40 and 70-30 electrodes were analyzed by using cyclic voltammetry, galvonostatic charge discharge and electrochemical impedance spectroscopy in 1 M NaOH aqueous electrolyte. The Mn-Co:60-40 composition shows maximum specific capacitance which is 679 F/g at scan rate 5 mV/sec. Charge discharge studies gives 95% columbic efficiency. Impedance spectroscopy reveals capacitive behavior and gives series resistance ∼0.19 ohm and combined internal resistance ∼0.89 ohm. The 80% retention of specific capacitance after the 1000 cycles. The synergistic effect of Mn-Co mixed metal oxide electrode having good conductivity, large surface area and improved charge transportation than individual electrode material leads to enhancing supercapacitor performance of electrode material for its practical application.  相似文献   

15.
Nano-structured LiVPO4F/Ag composite cathode material has been successfully synthesized via a sol–gel route. The structural and physical properties, as well as the electrochemical performance of the material are compared with those of the pristine LiVPO4F. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that Ag particles are uniformly dispersed on the surface of LiVPO4F without destroying the crystal structure of the bulk material. An analysis of the electrochemical measurements show that the Ag-modified LiVPO4F material exhibits high discharge capacity, good cycle performance (108.5 mAh g−1 after 50th cycles at 0.1 C, 93% of initial discharge capacity) and excellent rate behavior (81.8 mAh g−1 for initial discharge capacity at 5 C). The electrochemical impedance spectroscopy (EIS) results reveal that the adding of Ag decreases the charge-transfer resistance (Rct) of LiVPO4F cathode. This study demonstrates that Ag-coating is a promising way to improve the electrochemical performance of the pristine LiVPO4F for lithium-ion batteries cathode material.  相似文献   

16.
《Current Applied Physics》2014,14(5):672-679
Carbon dioxide is one of the greatest concerns worldwide, since it is not only a major greenhouse gas but also expected to be an important, sustainable resource for fuels and chemicals. The electrochemical conversion of carbon dioxide, based on solid electrolyte membrane reactors, has the promise to overcome the limitations of the conventional catalytic reactors such as the limited conversion and kinetics, relatively low selectivity and high energy consumption. In this review, electrocatalysts and solid oxide electrolytes, both proton and oxide ion conductors as core materials in an electrochemical ceramic membrane reactor have been reviewed and particular emphasis is placed on their application to synthesize carbon monoxide and hydrogen.  相似文献   

17.
18.
Carbon materials have potential applications in perovskite solar cell because of their excellent electronic properties and low cost. In this paper, we report, for the first time, activated carbon as a back contact for hole transport layer-free mixed halide perovskite solar cells. The ability of activated carbon to form conducting chain-like structure when dispersed in a polymeric solution makes it a possible candidate for back contact. A composite of activated carbon and PEMA was optimized with varying concentration. Mixed cation was used as a perovskite absorber and was analysed for its structural and optical properties. The fabricated devices were studied for their electrical performance. They were also subjected to stability study and showed promising results.  相似文献   

19.
Three activated carbons (ACs) for the electrodes of supercapacitor were prepared from cationic starch using KOH, ZnCl2 and ZnCl2/CO2 activation. The BET surface area, pore volume and pore size distribution of the ACs were evaluated using density functional theory method, based on N2 adsorption isotherms at 77 K. The surface morphology was characterized with SEM. Their electrochemical performance in prototype capacitors was determined by galvanostatic charge/discharge characteristics and cyclic voltammetry, and compared with that of a commercial AC, which was especially prepared for use in supercapacitors. The KOH-activated starch AC presented higher BET surface area (3332 m2 g−1) and larger pore volume (1.585 cm3 g−1) than those of the others, and had a different surface morphology. When used for the electrodes of supercapacitors, it exhibited excellent capacitance characteristics in 30 wt% KOH aqueous electrolytes and showed a high specific capacitance of 238 F g−1 at 370 mA g−1, which was nearly twice that of the commercial AC.  相似文献   

20.
Photosensitive carbon nanotube (CNT) paste was prepared by 3-roll milling of multi-walled carbon nanotubes (MWNTs), UV-sensitive binder solution, and Ag as filler additives. Arrays of MWNT dots with a diode structure were fabricated by a combination of screen printing method and photolithography using these paste, and acetone utilized as the developer. The MWNT dots were well-defined and the organic binder materials in the dots were partially removed. The MWNT film without a heat treatment showed a high current density of 1.35 mA/cm2 at 3.25 V/μm and low turn-on field of 2.2 V/μm at 100 μA/cm2. Acetone can be used as an efficient developer to form patterns and to remove the organic residues in patterns, simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号