首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present paper we have investigated the high-pressure, structural phase transition of Barium chalcogenides (BaO, BaSe and BaTe) using a three-body interaction potential (MTBIP) approach, modified by incorporating covalency effects. Phase transition pressures are associated with a sudden collapse in volume. The phase transition pressures and associated volume collapses obtained from TBIP show a reasonably good agreement with experimental data. Here, the transition pressure, NaCl-CsCl structure increases with decreasing cation-to-anion radii ratio. In addition, the elastic constants and their combinations with pressure are also reported. It is found that TBP incorporating a covalency effect may predict the phase transition pressure, the elastic constants and the pressure derivatives of other chalcogenides as well.   相似文献   

2.
In this paper we focused on the structural and elastic properties of four transition metal mononitrides (TMNs) (M=Ti, Nb, Hf and Zr) by using realistic three body interaction potential (RTBIP) model, including the role of temperature. These TMN compounds have been found to undergo NaCl (B1) to CsCl (B2) phase transition, at a pressure quite high as compared to other binary systems. We successfully obtained the phase transition pressures and volume changes at different temperatures. In addition, elastic constants of TMNs at different temperatures are discussed. The present theoretical results have been compared with the available experimental data and predictions of LDA theory.  相似文献   

3.
In this article, we have investigated the high-pressure structural phase transition of alkaline earth oxides using the three-body potential (TBP) model. Phase transition pressures are associated with elastic constants. An effective inter-ionic interaction potential (TBP) with long-range Coulomb interactions and the Hafemeister–Flygare type short-range overlap repulsion and the vdWl interaction is developed. The present calculations have revealed reasonably good agreement with the available experimental data on structural transition (B1–B2 structure). The phase transition pressures Pt of MgO, CaO, SrO, and BaO occur at 220, 45, 40, and 100?GPa, respectively. Further, the variations of the second-order elastic constants with pressure have followed a systematic trend, which are almost identical to those exhibited by the observed data measured for other semiconducting compounds with rocksalt (B1)-type crystal structure. It is found that TBP promises that we would be able to predict phase transition pressure and elastic constants for other chalcogenides as well. The results may be useful for geophysical study.  相似文献   

4.
The structural and elastic properties of thorium chalcogenides at high pressure, have been investigated using a suitable inter-ionic potential. The calculated equation of state, phase transition pressures for B1-B2 transition and bulk moduli for ThX (X=S,Se,Te) compounds agree well with the experimental results. ThTe, which crystallizes in the CsCl structure, does not show any structural transition up to 48 GPa. The present analysis does not show any anomalous features in elastic properties arising from ‘f’ electrons.  相似文献   

5.
The structural and elastic properties of cerium chalcogenides (CeZ, Z = S, Se, Te) under high pressure have been investigated by using the potential model considered up to third nearest neighbor interaction. The computed values of B1-B2 phase transition pressure, equation of state (compression curve), bulk modulus, its first order pressure derivative and elastic constants in the case of cerium chalcogenides agree well with the experimental results. The present study shows the anomalous behavior of cerium chalcogenides in comparison to the alkaline earth chalcogenides, due to the presence of Kondo effect and reentrant valence behavior of Ce in cerium chalcogenides.  相似文献   

6.
It is known that a number of compressed melts undergo structural phase transitions. Data on the structural changes at high pressures in chalcogenides (AsS, As2S3) and oxide (B2O3) melts with a network structure have been reviewed. Viscosity is one of the fundamental physical properties of a liquid. For various melts, it varies in a very wide range. Structural transformations in melts induce the corresponding changes in all physical properties, in particular viscosity. The measurements of the viscosity of a number of melts at high pressures and temperatures by the radiographic method have been reported. Changes in the viscosity by several orders of magnitude have been detected when the pressure is varied by several gigapascals. The diffusion mechanism in network-structure melts at various pressures has been analyzed. The prediction of the behavior of the viscosity of various melts at superhigh pressures is of high importance for the physics of glass transition, geophysics, and materials science.  相似文献   

7.
To study phase transition and elastic properties at high pressures and high temperatures, we have developed a realistic interaction potential model (RIPZpe) including temperature effects. This model is completely suitable for explaining the inter-atomic interaction involved at high temperature and high pressure as it includes the three-body interaction (TBI) and zero point energy effects. The phase transition of KBr crystal at high pressure and high temperatures including the TBI is done for the first time. We have estimated the phase transition pressures, volume collapses and elastic behaviour at various high pressure and high temperatures by RIPZpe approach and the results found are well suited with available experimental data.  相似文献   

8.
A realistic interaction potential model approach by including temperature effects is developed to study phase transition, elastic properties and thermo-physical properties at very high pressures and temperatures. This approach is effectively able to explain the inter-atomic interaction involved at high temperature and high pressure as it includes the three-body interactions. Earlier works overlooked the three-body interactions at high temperature and pressures. Moreover, the phase-transition pressures of MgO crystal at high temperatures including the three-body interaction are computed for the first time. Elastic behavior, anisotropic factor and Debye temperature of MgO at high pressures and temperatures are also reported.  相似文献   

9.
Static-compression data and absorption spectra for CsI have been collected to 61 GPa (610 kbar) at room temperature. The band gap closes with increasing pressure and CsI is expected to metallize at 105 (± 15) GPa. A second order phase transition to the CuAu I structure is observed at 39 (± 1) GPa. The elastic constants measured at low pressures do not predict that an elastic instability, and hence a structural distortion, would occur at elevated pressures. Similarly, an ionic pair-potential model which reproduces the properties of CsI at low pressures does not show the distortion to be stabilized at high pressures.  相似文献   

10.
Summary Most previous studies of magnetism in various compounds under extreme conditions have been conducted over a wide pressure range at room temperature or over a wide range of cryogenic temperatures at pressures below 20 GPa (200 kbar). We present some of the most recent studies of magnetism over an extended range of temperatures and pressures far beyond 20 GPa,i.e. in regions of pressure-temperature (P-T) space where magnetism has been largely unexplored. Recent techniques have permitted investigations of magnetism in selected 3d transition metal compounds in regions ofP-T where physical properties may be drastically modified; related effects have often been seen in selected doping studies at ambient pressures. We present57Fe and129I M?ssbauer isotope studies covering the range 300–4 K to sub-megabar pressures in compounds such as Sr2FeO4, LaFeO3 and FeI2, representative of a broad class of 3d transition metal compounds. At ambient pressure the electronic structure of the transition metal atom in these antiferromagnetic insulators extends from 3d 4 to 3d 6 and has a distinct influence on the pressure evolution of their magnetic properties. M?ssbauer studies of these compounds are considered in conjunction with available structural and electrical transport data at pressure. Paper presented at ICAME-95, Rimini, 10–16 September 1995.  相似文献   

11.
In this article, we have investigated the high-pressure structural phase transition of erbium pnictides (ErX; X?=?N, P and As). An extended interaction potential model has been developed (including the zero-point energy effect in three-body interaction potential model). Phase transition pressures are associated with a sudden collapse in volume. The phase transition pressures and associated volume collapses have been predicted successfully. The elastic constants, their combinations and pressure derivatives are also reported. The pressure behaviour of elastic constants, bulk modulus and shear modulus have been presented and discussed. Moreover, the thermophysical properties such as molecular force constant (f), infrared absorption frequency (υ 0), Debye temperature (θ D) and Grunneisen parameter (γ) have also been predicted.  相似文献   

12.
13.
The optical absorption spectra from bismuth ferrite (BiFeO3) have been studied at high pressures up to 60 GPa in diamond anvil cells. An electronic transition at which the energy of the optical absorption edge decreases sharply from ~1.5 eV to zero has been observed at room temperature in a pressure range of 45–55 GPa. This indirectly indicates a insulator-metal transition. The observed electronic transition correlates with the recently revealed structural and magnetic transitions induced by high pressures in this crystal. The behavior of the optical absorption edge with decreasing the pressure is completely reversible in correlation with the reversibility of the magnetic transition. The “smearing” of the structural transition in pressure is caused by thermal fluctuations between the high-spin state and low-spin state of the Fe3+ ions near the transition.  相似文献   

14.
Recent materials research has advanced the maximum ferromagnetic transition temperature in semiconductors containing magnetic elements toward room temperature. Reaching this goal would make information technology applications of these materials likely. In this article we briefly review the status of work over the past five years which has attempted to achieve a theoretical understanding of these complex magnetic systems. The basic microscopic origins of ferromagnetism in the (III,Mn)V compounds that have the highest transition temperatures appear to be well understood, and efficient computation methods have been developed which are able to model their magnetic, transport, and optical properties. However many questions remain.  相似文献   

15.
Lanthanide monophosphides LnP (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Tm and Yb) with a NaCl-type structure have systematically been prepared at high temperatures. Using synchrotron radiation, X-ray diffractions of LnP have been studied up to 61 GPa at room temperature. The NaCl---CsCl transition for CeP is found at around 25 GPa. First-order phase transitions of LnP (Ln = La, Pr and Nd) with the crystallographic change occur at around 24, 26 and 30 GPa, respectively. The structure of the high pressure phases of these phosphides is a body center tetragonal structure (Ln: 0, 0, 0; P: 1/2, 1/2, 1/2; space group P4/mmm), which can be seen as the distorted CsCl-type structure. The Pr---P distance in the high pressure form of PrP is 2.789 Å. This almost agrees with the sum of covalent radii of Pr and P. The Pr---P bond has the covalent character at very high pressures. Similar results are also obtained for LaP and NdP. The pressure-induced phase transitions of SmP, GdP, TbP, TmP and YbP occur at around 35, 40, 38, 53 and 51 GPa, respectively. The structure of the high pressure phase is unknown. The phase transitions of LnP with many f-electrons are not due to the mechanism of the ordinary NaCl---CsCl transition. The transition pressures of LnP increase with decreasing the lattice constants in the NaCl-type structure, which decrease with increasing atomic number of the lanthanide atoms.  相似文献   

16.
Ultrasonic wave transit times have been measured in n-type InP at room temperature using hydrostatic pressures up to 4 kbar. Linear pressure dependences are found for the elastic stiffness moduli implying that at the high pressure structural-electrical transition the shear-to-bulk modulus ratio (C11?C12)2B has a (fractional) value which fits the modified Born criterion for stability developed by Demarest et al. The anharmonic force constants and some of the third order elastic constants are found to be smaller the higher the transition pressure for indium III-V compounds.  相似文献   

17.
We have evolved an effective interionic interaction potential to investigate the pressure-induced phase transitions from zinc blende (B3) to rock salt (B1) structure in II-VI [ZnSe] semiconductors. The elastic constants, including the long-range Coulomb and van der Waals (vdW) interactions and the short-range repulsive interaction of up to second-neighbor ions within the Hafemeister and Flygare approach, are deduced. Keeping in mind that both of the ions are polarisable, we employed the Slater-Kirkwood variational method to estimate the vdW coefficients. The estimated value of the phase transition pressure (P t ) is higher than in the reported data, and the magnitude of the discontinuity in volume at the transition pressure is consistent with that data. The major volume discontinuity in the pressure-volume phase diagram identifies the structural phase transition from zinc blende to rock salt structure.

The variation of second-order elastic constants with pressure resembles that observed in some binary semiconductors. It is inferred that the vdW interaction is effective in obtaining the thermodynamic parameters such as the Debye temperature, the Gruneisen parameter, the thermal expansion coefficient and the compressibility. However, the inconsistency between the thermodynamic parameters as obtained from present model calculations and their experimental values is attributed to the fact that we have derived our expressions by assuming the overlap repulsion to be significant only up to the nearest second-neighbor ions, as well as neglecting thermal effects. It is thus argued that full analysis of the many physical interactions that are essential to binary semiconductors will lead to a consistent explanation of the structural and elastic properties of II–VI semiconductors.  相似文献   

18.
The high pressure behavior and pressure induced structural phase transition of two neptunium monochalcogenides have been investigated by using a three body potential approach. The calculated compression curves and the values of different high pressure behavior for NpSe and NpTe are presented and have been discussed and compared with the experimental values wherever available. The accuracy of the present approach in reproducing the phase transition pressure and high pressure behavior for these compounds are in general good agreement with the measured data. For NpSe and NpTe, the phase transition pressures for going from NaCl to CsCl phase have been observed at 22.4 and 14.2 GPa, respectively.  相似文献   

19.
The thermal expansion against temperature of ZnS, ZnSe and ZnTe is studied theoretically using the experimental pressure dependence of elastic stiffness constants and phonon frequencies. The mode Grüneisen parameters obtained from the high pressure effect on the one- and two- phonon Raman spectra at the metallic transition pressure by Weinstein are used originally, but do not reproduce the experimental linear expansion coefficient at high temperatures. The contributions from optical modes with large phonon frequency are important to the thermal expansion at high temperatures, and a set of mode Grüneisen parameters, which bring good agreement with the observed linear expansion coefficient not only at low temperatures, but also at high temperatures, are obtained. Then, the phonon dispersion curves of ZnS, ZnSe and ZnTe at their metallic transition pressures are quantitatively shown.  相似文献   

20.
The crystal structure of sodium niobate (NaNbO3) has been investigated by energy-dispersive X-ray diffraction at high pressures (up to 4.3 GPa) in the temperature range 300–1050 K. At normal conditions, NaNbO3 has an orthorhombic structure with Pbcm symmetry (antiferroelectric P phase). Upon heating, sodium niobate undergoes a series of consecutive transitions between structural modulated phases P-R-S-T(1)-T(2)-U; these transitions manifest themselves as anomalies in the temperature dependences of the positions and widths of diffraction peaks. Application of high pressure leads to a decrease in the temperatures of the structural transitions to the R, S, T(1), T(2), and U phases with different baric coefficients. A phase diagram for sodium niobate has been build in the pressure range 0–4.3 GPa and the temperature range 300–1050 K. The dependences of the unit-cell parameters and volume on pressure and temperature have been obtained. The bulk modulus and the volume coefficients of thermal expansion have been calculated for different structural modulated phases of sodium niobate. A phase transition (presumably, from the antiferroelectric orthorhombic P phase to the ferroelectric rhombohedral N phase) has been observed at high pressure (P = 1.6 GPa) and room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号