首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
《Current Applied Physics》2020,20(7):899-903
An advanced approach to minimize the light loss was discussed for III-V solar cells, by controlling the roughnesses of the device surface. Adhesives with different viscosities were applied to bond the III-V solar cells with the supporting substrate before the epitaxial lift-off process. The surface roughness of the III-V solar cells with epoxy adhesive (Rrms = 15.4 nm) is one order of magnitude higher than that with acrylic adhesive (Rrms = 1.6 nm), due to the differences in viscosity, resulting from the spreadability while being hardened. This roughness has increased the reflectance in the wavelength between 650 and 900 nm, implying that this reflectance is influenced by the rear surface of the solar cell. The device performance of the double-junction solar cells (Ga0.5In0.5P- and GaAs- based) also reflects the effect of the reflectance. The solar cell with the epoxy adhesive exhibited ~2% increase of the conversion efficiency than that with the acrylic adhesive, mainly due to the increased current density. The integrated current density from the external quantum efficiency (EQE) also exhibited ~2% increase only in the bottom (GaAs-based) cell, corresponding to the higher reflectance for red and near-infrared wavelength ranges.  相似文献   

2.
Abstract—Two main factors which limit the power conversion efficiency of solar cells are light absorption and recombination processes. In photovoltaic (PV) devices, low energy photons cannot be absorbed and excite electrons from valance band to conduction band, hence do not contribute to the current. On the other hand, high energy photons cannot be efficiently used due to a poor match to the energy gap. Existence of charge recombination in PV devices causes the low conversion performance, which is indicated by the low open-circuit voltage (V OC ). Using a blocking layer in system could effectively reduce the recombination of charge carriers. In this study, we simulated a solar cell with ITO/ZnO/P3HT&PCBM/Ag structure. To prevent the charge recombination, a ZnS QD layer was used which acts as a light absorbing and a recombination blocking layer in the ITO/ZnO film/ZnS QD/P3HT&PCBM/Ag structure. The simulated JV characteristics of solar cells showed a close match with the experimental results. Simulate data showed an increase of conversion efficiency in ZnS QDSSC from 1.71 to 3.10%, which is relatively 81.28% increase.  相似文献   

3.
In our studies the absorption, transmittance and reflectance spectra for periodic nanostructures with different parameters were calculated by the FDTD (Finite-Difference Time-Domain) method. It is shown that the proportion of reflected light in periodic structures is smaller than in case of thin films. The experimental results showed the light reflectance in the spectral range of 400–900 nm lower than 1% and it was significantly lower in comparison with surface texturing by pyramids or porous silicon.Silicon nanowires on p-type Si substrate were formed by the Metal-Assisted Chemical Etching method (MacEtch). At solar cells with radial p-n junction formation the thermal diffusion of phosphorus has been used at 790 °C. Such low temperature ensures the formation of an ultra-shallow p-n junction. Investigation of the photoelectrical properties of solar cells was carried out under light illumination with an intensity of 100 mW/cm2. The obtained parameters of NWs' solar cell were Isc = 22 mA/cm2, Uoc = 0.62 V, FF = 0.51 for an overall efficiency η = 7%. The relatively low efficiency of obtained SiNWs solar cells is attributed to the excessive surface recombination at high surface areas of SiNWs and high series resistance.  相似文献   

4.
This paper studies the fabrication and characterization of 80 nm zinc oxide anti-reflective coating (ARC) on flexible 1.3 μm thin film microcrystalline silicon (μc-Si) solar cell. High resolution X-ray diffraction (HR-XRD) shows a c-axis oriented ZnO (0 0 2) peak (hexagonal crystal structure) at 34.3° with full width at half maximum (FWHM) of 0.3936°. Atomic force microscope (AFM) measures high surface roughness root-mean-square (RMS) of the layer (50.76 nm) which suggests scattering of the incident light at the front surface of the solar cell. UV–vis spectrophotometer illustrates that ZnO ARC has optical transmittance of more than 80% in the visible and infra-red (IR) regions and corresponds to band gap (Eg) of 3.3 eV as derived from Tauc equation. Inclusion of ZnO ARC successfully suppresses surface reflectance from the cell to 2% (at 600 nm) due to refractive index grading between the Si and the ZnO besides quarter-wavelength (λ/4) destructive interference effect. The reduced reflectance and effective scattering effect of the incident light at the front side of the cell are believed to be the reasons why short-circuit current (Isc) and efficiency (η) of the cell improve.  相似文献   

5.
林捷  王如志  盖红  王波  严辉 《发光学报》2015,36(1):27-32
采用脉冲激光沉积(PLD)方法在湿法腐蚀后的Si(100)衬底上制备了Y2O3:Bi,Yb减反转光薄膜。所制备的薄膜在300~800 nm波长范围内的平均反射率最低至5.28%,同时在晶体硅太阳能电池最佳响应范围内的980 nm附近表现出了良好的下转光特性。与非减反下转光薄膜相比较,具有减反结构的Y2O3:Bi,Yb下转换薄膜的转光强度有了明显的提升。随着衬底腐蚀时间在一定范围内的延长,Bi3+和Yb3+的发射峰强度线性增大。该减反转光薄膜为太阳能电池效率提高提供了一种简单可行的方法。  相似文献   

6.
Quaternary n-type Al0.08In0.08Ga0.84N grown on p-Si using molecular beam epitaxy technique was fabricated as a pn-junction and an anti-reflection coating (ARC) of solar cells. The structural properties and surface morphology of the solar cells were investigated using scanning electron and atomic force microscopy. Optical reflectance was obtained using an optical reflectometery system (Filmetric F20-VIS). Current–voltage characteristics were examined under 100 mW cm?2 illumination conditions. Quaternary n-type Al0.08In0.08Ga0.84N coating was found to be an excellent ARC against incident light compared with other ARCs. This material also exhibited good light trapping over a wide wavelength spectrum, which produced highly efficient solar cells. The unique and strong polarization, as well as the piezoelectric effect, of the quaternary-nitrides was employed to reduce surface recombination velocities and enhance the solar cell performance. A solar cell with reasonable conversion efficiency of 9.74% was obtained when the n-Al0.08In0.08Ga0.84N/p-Si was employed.  相似文献   

7.
Monocrystalline Si films from the novel perforated-Si process are candidates for the fabrication of thin-film solar cells because their waffle shape enhances the optical absorption and hence permits the use of films with a thickness of only a few microns. We study the optics of waffle cells by three-dimensional Monte Carlo ray-tracing. A high photogeneration of 38 mA/cm2 from a film of thickness Wf=4 μm is possible due to a detached Al-back surface reflector that has an effective reflectance of 99.7% at 1250 nm. Our analytical model for light trapping in thin films explains this high reflectance. Two-dimensional numerical transport modeling reveals the existence of an optimum texture period p≈2Wf that originates from a carrier collection efficiency that increases with texture period while the photogeneration decreases with period. For well-passivated cells the optimum thickness Wf is at least one fifth of the diffusion length L. Efficiencies of 17% to 18% are feasible with waffle films of 1 to 3 μm in thickness. We introduce an analytic model for the minority carrier transport that agrees with two-dimensional numerical modeling to within 10% and reduces the computation time by orders of magnitude. This analytic model is also applicable to conformal thin-film geometries differing from the waffle geometry. Received: 1 March 1999 / Accepted: 28 March 1999 / Published online: 24 June 1999  相似文献   

8.
Reduced surface reflectance and enhanced light trapping is required by any high efficiency solar cell. Anisotropic etching was done on silicon (1 0 0) by using tetramethyl ammonium hydroxide TMAH, (CH3)4NOH, solution at 85 °C. Process variables considered were solution concentration and time proposed by response surface methodology (RSM). An effective surface texture was resulted with reflectance less than 8% without antireflection coating. The antireflection mechanism was also co-related with the etch rate of Si. Optimized values predicted by RSM for time and TMAH concentration were 5 min and 3.50% respectively. The technique and optimization of parameters by using response surface methodology (RSM) could be valuable in the texturization process for high-efficiency Si solar cells.  相似文献   

9.
Anti-reflection coatings of solar cells have been fabricated using different techniques. The techniques used include SiO2 thermal oxidation, ZnO/TiO2 sputtering deposition and porous silicon prepared by electrochemical etching. Surface morphology and structural properties of solar cells were investigated by using scanning electron microscopy and atomic forces microscopy. Optical reflectance was obtained by using optical reflectometer. I-V characterizations were studied under 80 mW/cm2 illumination conditions. Porous silicon was found to be an excellent anti-reflection coating against incident light when it is compared with another anti-reflection coating and exhibited good light-trapping of a wide wavelength spectrum which produced high efficiency solar cells.  相似文献   

10.
In this work we present a study of low-porosity porous silicon (PS) nanostructures stain etched on monocrystalline silicon solar cells. The PS layers reduce the reflectance, improve the diffusion of dopants by rapid thermal processes, and increase the homogeneity of the sheet resistance. Some samples were subjected to chemical oxidation in HNO3 to reduce the porosity of the surface layer. After the diffusion process, deposition of a SiNx antireflection layer, and screen printing of the samples, an efficiency of 15.5% is obtained for low-porosity PS solar cells, compared with an efficiency of 10.0% for standard PS cells and 14.9% for the reference Cz cells.  相似文献   

11.
Impurity photovoltaic effect(IPV) is one of the attempts to improve efficiency of solar cells and is the idea of exploiting three step generation via impurity states within the band gap to utilize sub-band gap photons. The three transitions are of electrons from valence band (VB) to conduction band (CB), valence band to impurity level and impurity level to conduction band. In the present simulation, we have used the p+nn+ structure in order to achieve higher photogenerated current and efficiency without loosing the open circuit voltage. Compared to other group-III elements in silicon solar cell, Indium is the most suitable material to achieve higher benefit in IPV. In this simulation, the model of IPV is considered to achieve the maximum benefit from the impurity state in a solar cell. To simulate we have used the one dimensional simulation program, SCAPS-1D. Again light trapping is an important part of IPV solar cell that has been considered in this simulation. Using IPV we have numerically demonstrated, an increase in efficiency, by 2.79% over that without-IPV effect and a 3.23% increase over the efficiency, 30.9% as reported by Schmeits and Mani [1].  相似文献   

12.
《Current Applied Physics》2020,20(2):282-287
Thin-film solar cells have attracted worldwide attention due to their high efficiency and low cost. Antimony selenide (Sb2Se3) is a promising light absorption material candidate for thin-film solar cells due to its suitable band gap, abundance, low toxicity, and high chemical stability. Herein, we fabricate an Sb2Se3 thin film solar cell using a simple hydrazine solution process. By controlling the thickness of the photoactive layer and inserting a poly(3-hexylthiophene) hole-transporting layer, an Sb2Se3 solar cell with a power conversion efficiency of 2.45% was achieved.  相似文献   

13.
The current study investigates the performance of dye-sensitized solar cells (DSSCs) based on Al-doped and undoped ZnO nanorod arrays synthesized by a simple hydrothermal method. Current density-voltage (J-V) characterizations indicate that Al-doping in ZnO crystal structure can significantly improve current densities and the energy conversion efficiency (η) of ZnO nanorod-based DSSCs. The maximum η, 1.34%, was achieved in DSSC when Al-doped ZnO nanorod arrays were grown in 0.04 M zinc acetate dihydrate solution with 5 mM aluminum nitrate nonahydrate. This result represents a large increase of η in Al-doped ZnO nanorod-based DSSCs as compared to undoped (0.05%). The improved DSSC photovoltaic performance can be attributed to two main factors: (1) increased light harvesting efficiency due to a large amount of N719 adsorbed on the large surface area of Al-doped ZnO nanorod arrays, and (2) increased electrical conductivity due to A13+ ion doped into the ZnO lattice at the divalent Zn2+ site, allowing electrons to move easily into the Al-doped ZnO conduction band.  相似文献   

14.
《Current Applied Physics》2014,14(9):1240-1244
A cylindrical Si3N4 nanopattern whose heights was 200 nm was fabricated on a glass substrate, and an aluminum-doped zinc oxide (AZO) layer was grown on the nanopatterned glass substrate. The nanopattern was applied to an amorphous silicon solar cell in order to increase the light-scattering effect, thus enhancing the efficiency of the solar cell. The reflectance of the solar cell on the Si3N4 nanopattern decreased and its absorption increased. Compared to a flat substrate, the short-circuit current density (Jsc) and conversion efficiency of a solar cell on the Si3N4 nanopatterned substrate were improved by 17.9% and 24.2%, respectively, as determined from solar simulator measurements.  相似文献   

15.
A porous silicon (PS) layer was prepared by photoelectrochemical etching (PECE), and a zinc oxide (ZnO) film was deposited on a PS layer using a radio frequency (RF) sputtering system. The surface morphology of the PS and ZnO/PS layers was characterised using scanning electron microscopy (SEM). Nano-pores were produced in the PS layer with an average diameter of 5.7 nm, which increased the porosity to 91%. X-ray diffraction (XRD) of the ZnO/PS layers shows that the ZnO film is highly oriented along the c-axis perpendicular to the PS layer. The average crystallite size of the PS and ZnO/PS layers are 17.06 and 17.94 nm, respectively. The photoluminescence (PL) emission spectra of the ZnO/PS layers present three emission peaks, two peaks located at 387.5 and 605 nm due to the ZnO nanocrystalline film and a third located at 637.5 nm due to nanocrystalline PS. Raman measurements of the ZnO/PS layers were performed at room temperature (RT) and indicate that a high-quality ZnO nanocrystalline film was formed. Optical reflectance for all the layers was obtained using an optical reflectometer. The lowest effective reflectance was obtained for the ZnO/PS layers. The fabrication of crystalline silicon (c-Si) solar cells based on the ZnO/PS anti-reflection coating (ARC) layers was performed. The IV characteristics of the solar cells were studied under 100 mW/cm2 illumination conditions. The ZnO/PS layers were found to be an excellent ARC and to exhibit exceptional light-trapping at wavelengths ranging from 400 to 1000 nm, which led to a high efficiency of the c-Si solar cell of 18.15%. The ZnO/PS ARC layers enhance and increase the efficiency of the c-Si solar cell. In this paper, the fabrication processes of the c-Si solar cell with ZnO/PS ARC layers are an attractive and promising technique to produce high-efficiency and low-cost of c-Si solar cells.  相似文献   

16.
We study numerically the photon input efficiency of silicon solar cells due to gold plasmonic nanoparticles deposited on the cells. At low densities, when collective effects in light scattering by the nanoparticle ensemble are negligible, the absorption dependence increases linearly for a significant range of the solar spectrum. Collective effects lead to the input efficiency saturates, reaches its maximum and then decreases with nanoparticle density. The maximal input efficiency depends on the photon wavelength, nanoparticle shape and size, their distance to the cell, and the cell thickness, and can reach ~ 95% in thick solar cells. Finally, we show that aluminum nanoparticles improve the input efficiency in comparison with gold nanoparticles.  相似文献   

17.
CdS quantum dot (QD) sensitized TiO2 nanorod array (NRA) film electrodes with different rod geometries were fabricated via a solvothermal route followed by a sequentialchemical bath deposition (S-CBD) process. By controlling the solution growth conditions, the rod geometries, especially the tip structures, of the TiO2 NRAs were tuned. The results indicated that the vertically aligned hierarchical NRAs possessed conically shaped tip geometry, which was favorable for film electrodes due to the reduced reflectance, enhanced light harvesting, fast charge-carrier separation and transfer, suppression of carrier recombination, sufficient electrolyte penetration and subsequent efficient QD assembly. CdS QD sensitized TiO2 NRA film electrodes with tapered tips exhibited an enhanced photoelectrochemical (PEC) performance, a photocurrent intensity of 5.13 mA/cm2 at a potential of 0 V vs. saturated calomel electrode, an open-circuit potential of −0.68 V vs. saturated calomel electrode and an incident photon to current conversion efficiency (IPCE) of 22% in the visible-light region from 400 to 500 nm. The effects of rod geometry on the optical absorption, reflectance, hydrophilic properties and PEC performance of bare TiO2 and CdS QD sensitized TiO2 NRA film electrodes were investigated. The mechanism of charge-carrier generation and transfer in these CdS QD sensitized solar cells based on vertically aligned TiO2 nanorods is discussed.  相似文献   

18.
The solar spectrum covers a broad wavelength range, which requires that antireflection coating (ARC) is effective over a relatively wide wavelength range for more incident light coming into the cell. In this paper, we present two methods to measure the composite reflection of SiO2/ZnS double-layer ARC in the wavelength ranges of 300-870 nm (dual-junction) and 300-1850 nm (triple-junction), under the solar spectrum AM0. In order to give sufficient consideration to the ARC coupled with the window layer and the dispersion effect of the refractive index of each layer, we use multi-dimensional matrix data for reliable simulation. A comparison between the results obtained from the weighted-average reflectance (WAR) method commonly used and that from the effective-average reflectance (EAR) method introduced here shows that the optimized ARC through minimizing the effective-average reflectance is convenient and available.  相似文献   

19.
An increase of about 1% of the delivered power by a mono-crystalline commercial silicon solar cell has been obtained by coating the cell with an active poly-vinylacetate film doped with a light harvesting phenanthroline-Eu3+ complex. The dopant absorbs the UV component of the solar spectrum, where the silicon-based cells are almost blind, and emits red light that can be converted with an efficiency close to the maximum. This effect, achieved by a low cost encapsulation process, has been proven for the case of Air Mass 0 lighting conditions, and could be exploited also for terrestrial applications with the proper choice of the organic ligand.  相似文献   

20.
CdS quantum dots (QDs) were introduced as an interface modifier in the poly(3-hexylthiophene) (P3HT)/TiO2 nanorod arrays hybrid photovoltaic device. The presence of CdS QDs interlayer was found to provide enhanced light absorption, increased interfacial recombination resistance at the P3HT/TiO2 interfaces, thus leading to a lower recombination rate of the electrons due to the stepwise structure of band edge in P3HT/CdS/TiO2, which accounts for the observed enhanced photocurrent and photovoltage of the hybrid solar cells. The optimized performance was achieved in P3HT/CdS/TiO2 hybrid solar cells after deposition of CdS QDs for 10 cycles, with a power conversion efficiency of 0.57 %, which is nearly ten times higher than that of P3HT/TiO2. The findings indicate that inorganic semiconductor quantum dots provide effective means to improve the performance of polymer/TiO2 hybrid solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号