首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Nonribosomal peptide synthetases (NRPSs) are large multidomain proteins that catalyze the formation of a wide range of biologically active natural products. These megasynthetases contain condensation (C) domains that catalyze peptide bond formation and chain elongation. The natural substrates for C domains are biosynthetic intermediates that are covalently tethered to thiolation (T) domains within the synthetase by thioester linkages. Characterizing C domain substrate specificity is important for the engineered biosynthesis of new compounds. RESULTS: We synthesized a series of aminoacyl-N-acetylcysteamine thioesters (aminoacyl-SNACs) and show that they are small-molecule substrates for NRPS C domains. Comparison of rates of peptide bond formation catalyzed by the C domain from enterobactin synthetase with various aminoacyl-SNACs as downstream (acceptor) substrates revealed high selectivity for the natural substrate analog L-Ser-SNAC. Comparing L- and D-Phe-SNACs as upstream (donor) substrates for the first C domain from tyrocidine synthetase revealed clear D- versus L-selectivity. CONCLUSIONS: Aminoacyl-SNACs are substrates for NRPS C domains and are useful for characterizing the substrate specificity of C domain-catalyzed peptide bond formation.  相似文献   

2.
《Chemistry & biology》1997,4(10):757-766
Background: Modular polyketide synthases (PKSs) are large multifunctional proteins that catalyze the biosynthesis of structurally complex bioactive products. The modular organization of PKSs has allowed the application of a combinatorial approach to the synthesis of novel polyketides via the manipulation of these biocatalysts at the genetic level. The inherent specificity of PKSs for their natural substrates, however, may place limits on the spectrum of molecular diversity that can be achieved in polyketide products. With the aim of further understanding PKS specificity, as a route to exploiting PKSs in combinatorial synthesis, we chose to examine the substrate specificity of a single intact domain within a bimodular PKS to investigate its capacity to utilize unnatural substrates.Results: We used a blocked mutant of a bimodular PKS in which formation of the triketide product could occur only via uptake and processing of a synthetic diketide intermediate. By introducing systematic changes in the native diketide structure, by means of the synthesis of unnatural diketide analogs, we have shown that the ketosynthase domain of module 2 (KS2 domain) in 6-deoxyerythronolide B synthase (DEBS) tolerates a broad range of variations in substrate structure, but it strongly discriminates against some others.Conclusions: Defining the boundaries of substrate recognition within PKS domains is crucial to the rationally engineered biosynthesis of novel polyketide products, many of which could be prepared only with great difficulty, if at all, by direct chemical synthesis or semi-synthesis. Our results suggest that the KS2 domain of DEBS1 has a relatively relaxed specificity that can be exploited for the design and synthesis of medicinally important polyketide products.  相似文献   

3.
Adenylation (A) domains act as the gatekeepers of non‐ribosomal peptide synthetases (NRPSs), ensuring the activation and thioesterification of the correct amino acid/aryl acid building blocks. Aryl acid building blocks are most commonly observed in iron‐chelating siderophores, but are not limited to them. Very little is known about the reprogramming of aryl acid A‐domains. We show that a single asparagine‐to‐glycine mutation in an aryl acid A‐domain leads to an enzyme that tolerates a wide range of non‐native aryl acids. The engineered catalyst is capable of activating non‐native aryl acids functionalized with nitro, cyano, bromo, and iodo groups, even though no enzymatic activity of wild‐type enzyme was observed toward these substrates. Co‐crystal structures with non‐hydrolysable aryl‐AMP analogues revealed the origins of this expansion of substrate promiscuity, highlighting an enlargement of the substrate binding pocket of the enzyme. Our findings may be exploited to produce diversified aryl acid containing natural products and serve as a template for further directed evolution in combinatorial biosynthesis.  相似文献   

4.
Directed evolution is a powerful tool to modify substrate specificity for a wide array of enzyme catalysts. In this issue of Chemistry & Biology, Thorson and coworkers use directed evolution to increase the catalytic proficiency of a model glycosyltransferase, OleD, 300-fold for a nonphysiological substrate (Williams et al., 2008).  相似文献   

5.
Polyketides and nonribosomal peptides constitute a large and diverse set of natural products with biological activity in microbial survival and pathogenesis, as well as broad pharmacological utility as antineoplastics, antibiotics or immunosupressants. These molecules are biosynthesized by the ordered condensation of monomer building blocks, acyl-CoAs or amino acids, leading to construction of linear acyl chains. Many of these natural products are constrained to their bioactive conformations by macrocyclization whereby, in one of the terminal steps of biosynthesis, parts of the molecule distant in the constructed linear acyl chain are covalently linked to one another. Typically, macrocyclization is catalyzed by a thioesterase domain at the C-terminal end of the biosynthetic assembly line, although alternative strategies are known. The enzymology of these macrocyclization catalysts, their structure, mechanism, and catalytic versatility, is the subject of this review. The diversity of macrocyclic structures accessed by enzyme catalyzed cyclization of linear acyl chains as well as their inherent substrate tolerance suggests their potential utility in reprogramming natural product biosynthesis pathways or accessing novel macrocyclic structures.  相似文献   

6.
Protochlorophyllide (Pchlide) reductases are key enzymes in the process of chlorophyll biosynthesis. In this review, current knowledge on the molecular organization, substrate specificity and assembly of the light-dependent reduced nicotinamide adenine dinucleotide phosphate:Pchlide oxidoreductases are discussed. Characteristics of light-independent enzymes are also described briefly, and the possible reasons for the selection of light-dependent enzymes during the course of evolution are discussed.  相似文献   

7.
The competition between the Escherichia coli carbohydrate phosphotransferase system and 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase for phosphoenolpyruvate limits the concentration and yield of natural products microbially synthesized via the shikimate pathway. To circumvent this competition for phosphoenolpyruvate, a shikimate pathway variant has been created. 2-Keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases encoded by Escherichia coli dgoA and Klebsiella pneumoniae dgoA are subjected to directed evolution. The evolved KDPGal aldolase isozymes exhibit 4-8-fold higher specific activities relative to that for native KDPGal aldolase with respect to catalyzing the condensation of pyruvate and d-erythrose 4-phosphate to produce DAHP. To probe the ability of the created shikimate pathway variant to support microbial growth and metabolism, growth rates and synthesis of 3-dehydroshikimate are examined for E. coli constructs that lack phosphoenolpruvate-based DAHP synthase activity and rely on evolved KDPGal aldolase for biosynthesis of shikimate pathway intermediates and products.  相似文献   

8.
Naturally occurring enzymes are remarkable biocatalysts with numerous potential applications in industry and medicine. However, many of their catalyst properties often need to be further tailored to meet the specific requirements of a given application. Within this context, directed evolution has emerged over the past decade as a powerful tool for engineering enzymes with new or improved functions. This review summarizes recent advances in applying directed evolution approaches to alter various enzyme properties such as activity, selectivity (enantio- and regio-), substrate specificity, stability, and solubility. Special attention will be paid to the creation of novel enzyme activities and products by directed evolution.  相似文献   

9.
10.
BACKGROUND: Polyketides are important compounds with antibiotic and anticancer activities. Several modular polyketide synthases (PKSs) contain a terminal thioesterase (TE) domain probably responsible for the release and concomitant cyclization of the fully processed polyketide chain. Because the TE domain influences qualitative aspects of product formation by engineered PKSs, its mechanism and specificity are of considerable interest. RESULTS: The TE domain of the 6-deoxyerythronolide B synthase was overexpressed in Escherichia coli. When tested against a set of N-acetyl cysteamine thioesters the TE domain did not act as a cyclase, but showed significant hydrolytic specificity towards substrates that mimic important features of its natural substrate. Also the overall rate of polyketide chain release was strongly enhanced by a covalent connection between the TE domain and the terminal PKS module (by as much as 100-fold compared with separate TE and PKS 'domains'). CONCLUSIONS: The inability of the TE domain alone to catalyze cyclization suggests that macrocycle formation results from the combined action of the TE domain and a PKS module. The chain-length and stereochemical preferences of the TE domain might be relevant in the design and engineered biosynthesis of certain novel polyketides. Our results also suggest that the TE domain might loop back to catalyze the release of polyketide chains from both terminal and pre-terminal modules, which may explain the ability of certain naturally occurring PKSs, such as the picromycin synthase, to generate both 12-membered and 14-membered macrolide antibiotics.  相似文献   

11.
6-Deoxyerythronolide B synthase (DEBS) is the modular polyketide synthase (PKS) that catalyzes the biosynthesis of 6-deoxyerythronolide B (6-dEB), the aglycon precursor of the antibiotic erythromycin. The biosynthesis of 6-dEB exemplifies the extraordinary substrate- and stereo-selectivity of this family of multifunctional enzymes. Paradoxically, DEBS has been shown to be an attractive scaffold for combinatorial biosynthesis, indicating that its constituent modules are also very tolerant of unnatural substrates. By interrogating individual modules of DEBS with a panel of diketides activated as N-acetylcysteamine (NAC) thioesters, it was recently shown that individual modules have a marked ability to discriminate among certain diastereomeric diketides. However, since free NAC thioesters were used as substrates in these studies, the modules were primed by a diffusive process, which precluded involvement of the covalent, substrate-channeling mechanism by which enzyme-bound intermediates are directly transferred from one module to the next in a multimodular PKS. Recent evidence pointing to a pivotal role for protein-protein interactions in the substrate-channeling mechanism has prompted us to develop novel assays to reassess the steady-state kinetic parameters of individual DEBS modules when primed in a more "natural" channeling mode by the same panel of diketide substrates used earlier. Here we describe these assays and use them to quantify the kinetic benefit of linker-mediated substrate channeling in a modular PKS. This benefit can be substantial, especially for intrinsically poor substrates. Examples are presented where the k(cat) of a module for a given diketide substrate increases >100-fold when the substrate is presented to the module in a channeling mode as opposed to a diffusive mode. However, the substrate specificity profiles for individual modules are conserved regardless of the mode of presentation. By highlighting how substrate channeling can allow PKS modules to effectively accept and process intrinsically poor substrates, these studies provide a rational basis for examining the enormous untapped potential for combinatorial biosynthesis via module rearrangement.  相似文献   

12.
Enzymes catalyzing asymmetric carboligation reactions typically show very high substrate specificity for their nucleophilic donor substrate components. Structure‐guided engineering of the thermostable transketolase from Geobacillus stearothermophilus by directed in vitro evolution yielded new enzyme variants that are able to utilize pyruvate and higher aliphatic homologues as nucleophilic components for acyl transfer instead of the natural polyhydroxylated ketose phosphates or hydroxypyruvate. The single mutant H102T proved the best hit toward 3‐methyl‐2‐oxobutyrate as donor, while the double variant H102L/H474S showed highest catalytic efficiency toward pyruvate as donor. The latter variant was able to complement the auxotrophic deficiency of Escherichia coli cells arising from a deletion of the dxs gene, which encodes for activity of the first committed step into the terpenoid biosynthesis, offering the chance to employ a growth selection test for further enzyme optimization.  相似文献   

13.
An epoxycyclohexenone (ECH) moiety occurs in natural products of both bacteria and ascomycete and basidiomycete fungi. While the enzymes for ECH formation in bacteria and ascomycetes have been identified and characterized, it remained obscure how this structure is biosynthesized in basidiomycetes. In this study, we i) identified a genetic locus responsible for panepoxydone biosynthesis in the basidiomycete mushroom Panus rudis and ii) biochemically characterized PanH, the cytochrome P450 enzyme catalyzing epoxide formation in this pathway. Using a PanH-producing yeast as a biocatalyst, we synthesized a small library of bioactive ECH compounds as a proof of concept. Furthermore, homology modeling, molecular dynamics simulation, and site directed mutation revealed the substrate specificity of PanH. Remarkably, PanH is unrelated to ECH-forming enzymes in bacteria and ascomycetes, suggesting that mushrooms evolved this biosynthetic capacity convergently and independently of other organisms.  相似文献   

14.
[reaction: see text] In an effort to expand the scope of natural product in vitro glycorandomization (IVG), the substrate specificity of NovM was investigated. A test of four aglycon analogues and over 40 nucleotide sugars revealed NovM has a surprisingly stringent substrate specificity and provided only three new "unnatural" natural products. On the basis of the determined substrate specificity, an alternative to the sugar nucleotide biosynthetic dogma and a cautionary note for the general applicability of IVG are introduced.  相似文献   

15.
Abstract

Cellulose is one of the major commercial products of Sweden and constitutes the most abundant of the natural polymer systems. Thus, it is of interest to review the molecular design and architecture of cellulose with particular reference to the controls of its biosynthesis. The bioassembly process is highly ordered and structured, reflecting the intricate series of events which must occur to generate a thermodynamically metastable crystalline submicroscopic, ribbonlike structure. The plant cell wall is an extremely complex composite of many different polymers. Cellulose is the “reinforcing rod” component of the wall. True architectural design demands a polymer which can withstand great flexing and torsional strain. Using comparative Hydrophobic Cluster Analysis of a bacterial cellulose synthase and other glycosyl transferases, the multidomain architecture of glycosyl transferases has been analyzed. All polymerization reactions which are processive require at least three catalytic sites located on two different domains. In contrast, retaining reactions with glycosyl transferases require only a single domain and two sites. Cellulose synthase appears to have evolved a mechanism to simultaneously bind at least three UDP-glucoses and to polymerize, by double addition, two UDP-glucoses in such a manner that the 2-fold screw axis of the β-1,4-glucan chain is maintained. Thus, no primer is required as the glucose monomers are added two-by-two to the growing chain. At the next higher level of assembly, the catalytic sites simultaneously polymerize parallel glucan chain polymers in close proximity so that they will favorably associate to crystallize into the metastable cellulose I allomorph. Recent energy analysis suggests that the first stage of this association is the formation of a minisheet through van der Waals forces, followed by layering of these minisheets to form the crystalline microfibril. In native cellulose biogenesis, the microfibril shape and size appear to be determined by a multimeric enzyme complex (TC) which resides in the plasma membrane. This complex, known as a terminal complex, was discovered through electron microscopy of freeze fracture replicas. The entire complex moves in the plane of the fluid plasma membrane as the result of polymerization/crystallization reactions. The assembly stages for native cellulose I are coordinated on a spatial/temporal scale, and they are under the genetic control of the organism. This might lead one to conclude that cellulose I could only be assembled with Nature's indigenous machinery; however, this is not the case. Recently, in collaboration with Professor Kobayashi and his colleagues in Sendai and Tokyo, we have synthesized cellulose I abiotically under conditions very different from those in the living cell or from isolated cell components. Purification of an endoglucanase from Trichoderma which serves as the catalyst and the addition of β-cellobiosyl fluoride as the substrate in acetonitrile/acetate buffer has led to the assembly of synthetic cellulose I. Although natural and synthetic assembly pathways are very different, there are similar, underlying fundamental mechanisms common to both. These mechanisms will be discussed in relation to the more thermodynamically stable allomorph of cellulose (cellulose II) first demonstrated by Professor Rånby in 1952. The evolution of cellulose biosynthesis will be summarized in terms of the demands for maintaining optimal cellular environments to generate the complex macromolecular assemblies for cell wall biogenesis. Nature provides an exceptional model for cellulose biosynthesis that will lead us toward the biotechnological production of improved natural cellulose as well as synthetic cellulose and its derivatives.  相似文献   

16.
The tetracyclic core of anthracycline natural products with antitumor activity such as aclacinomycin A are tailored during biosynthesis by regioselective glycosylation. We report the first synthesis of TDP-L-rhodosamine and demonstrate that the glycosyltransferase AknS transfers L-rhodosamine to the aglycone to initiate construction of the side-chain trisaccharide. The partner protein AknT accelerates AknS turnover rate for L-rhodosamine transfer by 200-fold. AknT does not affect the Km but rather affects the kcat. Using these data, we propose that AknT causes a conformational change in AknS that stabilizes the transition state and ultimately enhances transfer. When the subsequent glycosyltransferase AknK and its substrate TDP-L-fucose are also added to the aglycone, the disaccharide and low levels of a fully reconstituted trisaccharide form of aclacinomycin are observed.  相似文献   

17.
Polyketide synthases (PKSs) catalyze the production of numerous biologically important natural products via repeated decarboxylative condensation reactions. Modular PKSs, such as the 6-deoxyerythronolide B synthase (DEBS), consist of multiple catalytic modules, each containing a unique set of covalently linked catalytic domains. To better understand the engineering opportunities of these assembly lines, the extender unit and acyl carrier protein (ACP) specificity of keto synthase (KS) domains from modules 3 and 6 of DEBS were analyzed. These studies were undertaken with a newly developed didomain [KS][AT] construct, which lacks its own ACP domain and can therefore be interrogated with homologous or heterologous ACP or acyl-ACP substrates. By substituting the natural methylmalonyl extender unit with a malonyl group, a modest role was demonstrated for the KS in recognition of the nucleophilic substrate. The KS domain from module 3 of DEBS was found to exhibit a distinct ACP-recognition profile from the KS domain of module 6. On the basis of the above kinetic insights, a hybrid module was constructed ([KS3][AT3][KR5][ACP5][TE]) which displayed substrate recognition and elongation capabilities consistent with the natural module 3 protein. Unlike module 3, however, which lacks a ketoreductase (KR) domain, the hybrid module was able to catalyze reduction of the beta-ketothioester product of chain elongation. The high expression level and functionality of this hybrid protein demonstrates the usefulness of kinetic analysis for hybrid module design.  相似文献   

18.
In vivo evolution of an RNA-based transcriptional activator   总被引:2,自引:0,他引:2  
  相似文献   

19.
The termination step is an important source of structural diversity in polyketide biosynthesis. Most type I polyketide synthase (PKS) assembly lines are terminated by a thioesterase (TE) domain located at the C-terminus of the final module, while other PKS assembly lines lack a terminal TE domain and are instead terminated by a separate enzyme in trans. In cylindrocyclophane biosynthesis, the type I modular PKS assembly line is terminated by a freestanding type III PKS (CylI). Unexpectedly, the final module of the type I PKS (CylH) also possesses a C-terminal TE domain. Unlike typical type I PKSs, the CylH TE domain does not influence assembly line termination by CylI in vitro. Instead, this domain phylogenetically resembles a type II TE and possesses activity consistent with an editing function. This finding may shed light on the evolution of unusual PKS termination logic. In addition, the presence of related type II TE domains in many cryptic type I PKS and nonribosomal peptide synthetase (NRPS) assembly lines has implications for pathway annotation, product prediction, and engineering.  相似文献   

20.
BACKGROUND: Many pharmacologically important peptides are synthesized nonribosomally by multimodular peptide synthetases (NRPSs). These enzyme templates consist of iterated modules that, in their number and organization, determine the primary structure of the corresponding peptide products. At the core of each module is an adenylation domain that recognizes the cognate substrate and activates it as its aminoacyl adenylate. Recently, the crystal structure of the phenylalanine-activating adenylation domain PheA was solved with phenylalanine and AMP, illustrating the structural basis for substrate recognition. RESULTS: By comparing the residues that line the phenylalanine-binding pocket in PheA with the corresponding moieties in other adenylation domains, general rules for deducing substrate specificity were developed. We tested these in silico 'rules' by mutating specificity-conferring residues within PheA. The substrate specificity of most mutants was altered or relaxed. Generalization of the selectivity determinants also allowed the targeted specificity switch of an aspartate-activating adenylation domain, the crystal structure of which has not yet been solved, by introducing a single mutation. CONCLUSIONS: In silico studies and structure-function mutagenesis have defined general rules for the structural basis of substrate recognition in adenylation domains of NRPSs. These rules can be used to rationally alter the specificity of adenylation domains and to predict from the primary sequence the specificity of biochemically uncharacterized adenylation domains. Such efforts could enhance the structural diversity of peptide antibiotics such as penicillins, cyclosporins and vancomycins by allowing synthesis of 'unnatural' natural products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号