首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dinitrosyl-iron complexes (DNICs) are stable carriers for nitric oxide (NO), an important biological signaling molecule and regulator. However, the insolubility of synthetic DNICs, such as Roussin's red ester (RRE), in water has impaired efforts to unravel their biological functions. Here, we report a water-soluble and structurally well-characterized RRE [Fe(mu-SC2H4COOH)(NO)2]2 (DNIC-1) and a {Fe(NO)2}(10) DNIC [(PPh2(Ph-3-SO3Na))2Fe(NO)2] (DNIC-2), their NO-induced protein regulation, and their cellular uptake mechanism using immortalized vascular endothelial cells as a model. Compared with the most common NO donor, S-nitroso-N-acetyl-penicillamine (SNAP), the in vitro NO release assay showed that both DNICs acted as much slower yet higher stoichiometric NO-release agents with low cytotoxicity (IC50 > 1 mM). Furthermore, L-cysteine facilitated NO release from SNAP and DNIC-1, but not DNIC-2, in a dose- and time-dependent manner. EPR spectroscopic analysis showed, for the first time, that intact DNIC-1 can either diffuse or be transported into cells independently and can transform to either paramagnetic protein bound DNIC in the presence of serum or [DNIC-(Cys)2] with excess L-cysteine under serum-free conditions. Both DNICs subsequently induced NO-dependent upregulation of cellular heat shock protein 70 and in vivo protein S-nitrosylation. We conclude that both novel water-soluble DNICs have potential to release physiologically relevant quantities of NO and can be a good model for deciphering how iron-sulfur-nitrosyl compounds permeate into the cell membrane and for elucidating their physiological significance.  相似文献   

2.
Nitric oxide is an important molecule in biology and modulates a variety of physiological and pathophysiological processes. Some of its regulatory functions are exerted through interactions with redox-active elements, including iron, nickel, cobalt, and sulfur. Metalloenzymes containing [ nFe- nS] ( n = 2 or 4) clusters can be activated or inactivated by reaction with NO, affording dinitrosyl iron complexes. Studies of the NO chemistry of small-molecule iron thiolate complexes have provided insight into these biological processes and suggested probable intermediates. To explore this chemistry from a different perspective, we prepared nickel and cobalt thiolate complexes and investigated their reactions with NO and related compounds. We report here the first examples of anionic complexes containing {Ni(NO)} (10) and {Co(NO) 2} (10) units, the reactivity of which suggests possible intermediates in the interconversion of iron thiolate nitrosyl compounds. Our results demonstrate new chemistry involving NO and simple complexes of nickel and cobalt supported by thiolates, which have been known for more than 30 years. The use of mass balance methodology was key to their discovery. Among the novel complexes reported are (Et 4N) 2[Ni(NO)(SPh) 3] ( 2), from (Et 4N) 2[Ni(SPh) 4] ( 1) and NO, (Et 4N) 2[Ni 2(NO) 2(mu-SPh) 2(SPh) 2] ( 3), from 1 and NO (+) or 2 and Me 3O (+), (Et 4N)[Co(NO) 2(SPh) 2] ( 5), from (Et 4N) 2[Co(SPh) 4] ( 4) and NO, and [Co 3(NO) 6(mu-SPh) 3] ( 6), from 5 and Me 3O (+). In the syntheses of 2 and 5, NO could be replaced by the convenient solid Ph 3CSNO.  相似文献   

3.
Described are studies directed toward elucidating the controversial chemistry relating to the solution phase reactions of nitric oxide with the iron(II) porphyrin complex Fe(TPP)(NO) (1, TPP = meso-tetraphenylporphinato2-). The only reaction observable with clean NO is the formation of the diamagnetic dinitrosyl species Fe(TPP)(NO)2 (2), and this is seen only at low temperatures (K(1) < 3 M(-1) at ambient temperature). However, 1 does readily react reversibly with N2O3 in the presence of excess NO to give the nitro nitrosyl complex Fe(TPP)(NO2)(NO) (3), suggesting that previous claims that 1 promotes NO disproportionation to give 3 may have been compromised by traces of air in the nitric oxide sources. It is also noted that 3 undergoes reversible loss of NO to give the elusive nitro species Fe(TPP)(NO2) (4), which has been implicated as a powerful oxygen atom transfer agent in reactions with various substrates. Furthermore, in the presence of excess NO2, the latter undergoes oxidation to the stable nitrato analogue Fe(TPP)(NO3) (5). Owing to such reactivity of Fe(TPP)(NO2), flash photolysis and stopped-flow kinetics rather than static techniques were necessary for the accurate measurement of dissociation equilibria characteristic of Fe(TPP)(NO2)(NO) in 298 K toluene solution. Flash photolysis of 3 resulted in competitive NO2 and NO dissociation to give Fe(TPP)(NO) and Fe(TPP)(NO2), respectively. The rate constant for the reaction of 1 with N2O3 to generate Fe(TPP)(NO2)(NO) was determined to be 1.8 x 10(6) M(-1) s(-1), and that for the NO reaction with 4 was similarly determined to be 4.2 x 10(5) M(-1) s(-1). Stopped-flow rapid dilution techniques were used to determine the rate constant for NO dissociation from 3 as 2.6 s(-1). The rapid dilution experiments also demonstrated that Fe(TPP)(NO2) readily undergoes further oxidation to give Fe(TPP)(NO3). The mechanistic implications of these observations are discussed, and it is suggested that NO2 liberated spontaneously from Fe(P)(NO2) may play a role in an important oxidative process involving this elusive species.  相似文献   

4.
Developing a novel tool capable of real-time monitoring and accurate quantification of NO is critical to understanding its role in physiological and pathological processes. Herein, a two-photon ratiometric fluorescent probe (NOP) was developed for real-time imaging and quantification of NO based on fluorescence resonance energy transfer-photoinduced electron transfer (FRET-PET). In this developed probe, coumarin (CM) and naphthalimide with o-phenylenediamine (NPM) were rationally designed as a fluorescent donor and acceptor, respectively, to enable a ratiometric fluorescence response to NO. The developed NO probe demonstrated good detection linearity with the concentration of NO in the range of 0.100–200 μM, with a detection limit of 19.5 ± 1.00 nM. Considering the advantages of high selectivity, good accuracy and rapid dynamic response (<15 s), the developed NO probe was successfully applied for real-time imaging and accurate quantification of NO in neural stem cells (NSCs) and different regions of mouse brain tissue with a penetration depth of 350 μm. Using this powerful tool, it was found that NO regulated the activation and differentiation of quiescent NSCs (qNSCs). In addition, NO-induced differentiation of qNSCs into neurons was found to be dose-dependent: 50.0 μM NO caused about 50.0% of qNSCs to differentiate into neurons. Moreover, different regions of the mouse brain were observed to be closely related to the concentration of NO, and the concentration of NO in the DG region was found to be lower than that in the S1BF, CA1, LD and CPu of the Alzheimer''s disease (AD) mouse brain. The symptoms of AD mice were significantly improved through the treatment with NO-activated NSCs in the DG region.

Developing a novel tool capable of real-time monitoring and accurate quantification of NO is critical to understanding its role in physiological and pathological processes.  相似文献   

5.
Owen TM  Rohde JU 《Inorganic chemistry》2011,50(11):5283-5289
Reaction of [FeO(tmc)(OAc)](+) with the free radical nitrogen monoxide afforded a mixture of two Fe(II) complexes, [Fe(tmc)(OAc)](+) and [Fe(tmc)(ONO)](+) (where tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane and AcO(-) = acetate anion). The amount of nitrite produced in this reaction (ca. 1 equiv with respect to Fe) was determined by ESI mass spectrometry after addition of (15)N-enriched NaNO(2). In contrast to oxygen atom transfer to PPh(3), the NO reaction of [FeO(tmc)(OAc)](+) proceeds through an Fe(III) intermediate that was identified by UV-vis-NIR spectroscopy and ESI mass spectrometry and whose decay is dependent on the concentration of methanol. The observations are consistent with a mechanism involving oxide(?1-) ion transfer from [FeO(tmc)(OAc)](+) to NO to form an Fe(III) complex and NO(2)(-), followed by reduction of the Fe(III) complex. Competitive binding of AcO(-) and NO(2)(-) to Fe(II) then leads to an equilibrium mixture of two Fe(II)(tmc) complexes. Evidence for the incorporation of oxygen from the oxoiron(IV) complex into NO(2)(-) was obtained from an (18)O-labeling experiment. The reported reaction serves as a synthetic example of the NO reactivity of biological oxoiron(IV) species, which has been proposed to have physiological functions such as inhibition of oxidative damage, enhancement of peroxidase activity, and NO scavenging.  相似文献   

6.
A new method employing a combination of microdialysis sampling and chemiluminescence (CL) detection was developed to monitor nitric oxide (NO) in vivo. A special probe was designed with an interference-free membrane to achieve very high selectivity for NO. High sensitivity was achieved by optimizing the working system and improving the NO sampling time. This system was used in vivo to monitor blood and brain tissue in rats and rabbits. The system is sensitive enough to detect variations of NO formation under different physiological states. The linear valid range of NO determination is 5 nM to 1 μM, with a 3σ detection limit of 1 nM; real NO concentrations in test animals used in this work were found to be in the range of 1-5 nM or even less. Finally, the effects of body temperature, NO donors, Viagra, NO activators, NO cofactors and NO interference (such as O2) were investigated carefully in different physiological situations.  相似文献   

7.
Reactions of nitric oxide with cysteine-ligated iron-sulfur cluster proteins typically result in disassembly of the iron-sulfur core and formation of dinitrosyl iron complexes (DNICs). Here we report the first evidence that DNICs also form in the reaction of NO with Rieske-type [2Fe-2S] clusters. Upon treatment of a Rieske protein, component C of toluene/o-xylene monooxygenase from Pseudomonas sp. OX1, with an excess of NO(g) or NO-generators S-nitroso-N-acetyl-D,L-pencillamine and diethylamine NONOate, the absorbance bands of the [2Fe-2S] cluster are extinguished and replaced by a new feature that slowly grows in at 367 nm. Analysis of the reaction products by electron paramagnetic resonance, M?ssbauer, and nuclear resonance vibrational spectroscopy reveals that the primary product of the reaction is a thiolate-bridged diiron tetranitrosyl species, [Fe(2)(μ-SCys)(2)(NO)(4)], having a Roussin's red ester (RRE) formula, and that mononuclear DNICs account for only a minor fraction of nitrosylated iron. Reduction of this RRE reaction product with sodium dithionite produces the one-electron-reduced RRE, having absorptions at 640 and 960 nm. These results demonstrate that NO reacts readily with a Rieske center in a protein and suggest that dinuclear RRE species, not mononuclear DNICs, may be the primary iron dinitrosyl species responsible for the pathological and physiological effects of nitric oxide in such systems in biology.  相似文献   

8.
Shortwave infrared (SWIR) dyes are characterized by their ability to absorb light from 900 to 1400 nm, which is ideal for deep tissue imaging owing to minimized light scattering and interference from endogenous pigments. An approach to access such molecules is to tune the photophysical properties of known near-infrared dyes. Herein, we report the development of a series of easily accessible (three steps) SWIR xanthene dyes based on a dibenzazepine donor conjugated to thiophene ( SCR-1 ), thienothiophene ( SCR-2 ), or bithiophene ( SCR-3 ). We leverage the fact that SCR-1 undergoes a bathochromic shift when aggregated for in vivo studies by developing a ratiometric nanoparticle for NO ( rNP-NO ), which we employed to successfully visualize pathological levels of nitric oxide in a drug-induced liver injury model via deep tissue SWIR photoacoustic (PA) imaging. Our work demonstrates how easily this dye series can be utilized as a component in nanosensor designs for imaging studies.  相似文献   

9.
It is well-known that chlorine active species (e.g., Cl(2), ClONO(2), ClONO) can form from heterogeneous reactions between nitrogen oxides and hydrogen chloride on aerosol particle surfaces in the stratosphere. However, less is known about these reactions in the troposphere. In this study, a potential new heterogeneous pathway involving reaction of gaseous HCl and HNO(3) on aluminum oxide particle surfaces, a proxy for mineral dust in the troposphere, is proposed. We combine transmission Fourier transform infrared spectroscopy with X-ray photoelectron spectroscopy to investigate changes in the composition of both gas-phase and surface-bound species during the reaction under different environmental conditions of relative humidity and simulated solar radiation. Exposure of surface nitrate-coated aluminum oxide particles, from prereaction with nitric acid, to gaseous HCl yields several gas-phase products, including ClNO, NO(2), and HNO(3), under dry (RH < 1%) conditions. Under humid more conditions (RH > 20%), NO and N(2)O are the only gas products observed. The experimental data suggest that, in the presence of adsorbed water, ClNO is hydrolyzed on the particle surface to yield NO and NO(2), potentially via a HONO intermediate. NO(2) undergoes further hydrolysis via a surface-mediated process, resulting in N(2)O as an additional nitrogen-containing product. In the presence of broad-band irradiation (λ > 300 nm) gas-phase products can undergo photochemistry, e.g., ClNO photodissociates to NO and chlorine atoms. The gas-phase product distribution also depends on particle mineralogy (Al(2)O(3) vs CaCO(3)) and the presence of other coadsorbed gases (e.g., NH(3)). These newly identified reaction pathways discussed here involve continuous production of active ozone-depleting chlorine and nitrogen species from stable sinks such as gas-phase HCl and HNO(3) as a result of heterogeneous surface reactions. Given that aluminosilicates represent a major fraction of mineral dust aerosol, aluminum oxide can be used as a model system to begin to understand various aspects of possible reactions on mineral dust aerosol surfaces.  相似文献   

10.
Transition-metal aqua complex salts [M(H2O)6]X2 (where M is Mn(II), Co(II), Ni(II), Zn(II), or Cd(II) and X is NO3-, Cl-, or ClO4-) can be dissolved in triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymers (Pluronics, such as P65) to form homogeneous liquid crystalline (LC) mesophases. However, the [Co(H2O)6]X2:P65 LC mesophases slowly undergo phase separation into a disordered ion-free phase and an ordered ion-rich LC mesophase. The phase separation also takes place in the two-salt systems [Co(H2O)6](NO3):[Co(H2O)6](ClO4)2:P65 in which the ion-free disordered domains separate out from the initially ordered homogeneous mesophase. The phase separation results in a physical mixture of a hexagonal nitrate-rich and cubic perchlorate-rich LC and disordered ion-free domains in the mixed salt systems. The driving force in the phase separation in the [Co(H2O)6]X2:P65 system is Co(II)-catalyzed aerobic oxidation of P65 into ester and/or other oxidation products. The separation of ions in the [Co(H2O)6](NO3)2:[Co(H2O)6](ClO4)2:P65 system is related to the mesostructures of the two-salt systems that are different, hexagonal in the [Co(H2O)6](NO3)2:P65 system and cubic in the [Co(H2O)6](ClO4)2:P65 system. There is no visible phase separation in the other transition-metal salt:P65 systems. The phase separation in the [Co(H2O)6]X2:P65 systems can also be eliminated by keeping the mesophase under a N2 atmosphere.  相似文献   

11.
12.
As it is now well-established that nitric oxide plays an important role in many physiological processes, there is a renewed interest in dinitrosyl-iron complexes (DNICs). The question concerning the electronic structure of DNICs circles around the formal oxidation states of the iron and nitric oxide of the Fe(NO)2 core. Previous infrared measurements of nu(NO) alone point out inconsistencies in assigning electron configurations and charges on metals, inherent from the measurement of one parameter external to the metal. This work represents the first experimental and theoretical attempt to assign vibrational modes for the {Fe(NO)2}9 core of DNICs. The following complexes are investigated, [PPN][S5Fe(NO)2] (1), [PPN][Se5Fe(NO)2] (2), [PPN][(SPh)2Fe(NO)2] (3), and [PPN][(SePh)2Fe(NO)2] (4). The analysis of isotopically edited Raman data together with normal coordinate calculation permitted assignment of nu(NO) and nu(Fe-NO) stretching and delta(Fe-N-O) bending modes in these complexes. The assignments proposed are the first ever reported for the DNICs; a comparison of nu(NO) and nu(Fe-NO) stretching frequencies in DNICs is now feasible. The Fe(NO)2 core electronic configuration in these complexes is described as {Fe1+(*NO)2}. Results from 1 and 3 have been complemented by density functional theory (DFT) frequency calculations. In addition to providing a reasonably correct account of the observed frequencies, DFT calculations also give a good account of the frequency shifts upon 15NO substitution providing the first link between DFT and Raman spectroscopies for DNICs. Through the use of a combination of NO intraligand and metal-ligand vibrational data for the Fe(NO)2 core, normal coordinate analysis gives a NO stretching force constant, which compared to molecular NO gas, is significantly reduced for all four complexes. The hybrid U-B3LYP/6-311++G(3d,2p) density functional method has been employed to analyze the molecular orbital compositions of predominantly NO orbitals based on the crystal structure of complex 1. The molecular orbital not only revealed the bonding nature of the {Fe(NO)2}9 core but also provided a qualitative correct account of the observed low NO vibrational frequencies. The calculation shows that the NO is involved in a strong donor bonding interaction with the Fe1+. This donor bonding interaction involves the 5sigma molecular orbital of the NO, which is sigma-bonding with respect to the intramolecular NO bond, and removal of electron density from this orbital destabilizes the NO bond. Though it is too ambiguous to extrapolate a nu(Fe-NO)/nu(NO) correlation line for {Fe(NO)2}9 DNICs based only on the data reported here, the feasibility of using a vibrational systematics diagram to extract the electron configurations and charges on metals is demonstrated based on the vibrational data available in the literature for iron-nitrosyl complexes. The data provided here can be used as a model for the determination of effective charges on iron and the bonding of nitric oxides to metals in DNICs.  相似文献   

13.
The room-temperature reactions of nitric oxide with 46 atomic cations have been surveyed systematically across and down the periodic table using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. Rate coefficients and product distributions were measured for the reactions of first-row cations from K+ to Se+, of second-row cations from Rb+ to Te+ (excluding Tc+), and of third-row cations from Cs+ to Bi+. Reactions both first and second order in NO were identified. The observed bimolecular reactions were thermodynamically controlled. Efficient exothermic electron transfer was observed with Zn+, As+, Se+, Au+, and Hg+. Bimolecular O-atom transfer was observed with Sc+, Ti+, Y+, Zr+, Nb+, La+, Hf+, Ta+, and W+. Of the remaining 32 atomic ions, all but 8 react in novel termolecular reactions second order in NO to produce NO+ and the metal-nitrosyl molecule, the metal-monoxide cation and nitrous oxide, and/or the metal-nitrosyl cation. K+, Rb+, Cs+, Ga+, In+, Tl+, Pb+, and Bi+ are totally unreactive. Further reactions with NO produce the dioxide cations CaO2+, TiO2+, VO2+, CrO2+, SrO2+, ZrO2+, NbO2+, RuO2+, BaO2+, HfO2+, TaO2+, WO2+, ReO2+, and OsO2+ and the still higher order oxides WO3+, ReO3+, and ReO4+. NO ligation was observed in the formation of CaO+(NO), ScO+(NO), TiO+(NO), VO+(NO)(1-3), VO2+(NO)(1-3), SrO+(NO), SrO2+(NO)1,2, RuO+(NO)(1-3), RuO2+(NO)1,2, OsO+(NO)(1-3), and IrO+(NO). The reported reactivities for bare atomic ions provide a benchmark for reactivities of ligated atomic ions and point to possible second-order NO chemistry in biometallic and metal-surface environments leading to the conversion of NO to N2O and the production of metal-nitrosyl molecules.  相似文献   

14.
Nitrogen dioxide ((*)NO(2)) participates in a variety of biological reactions. Of great interest are the reactions of (*)NO(2) with oxymyoglobin and oxyhemoglobin, which are the predominant hemeproteins in biological systems. Although these reactions occur rapidly during the nitrite-catalyzed autoxidation of hemeproteins, their roles in systems producing (*)NO(2) in the presence of these hemeproteins have been greatly underestimated. In the present study, we employed pulse radiolysis to study directly the kinetics and mechanism of the reaction of oxymyoglobin (MbFe(II)O(2)) with (*)NO(2). The rate constant of this reaction was determined to be (4.5 +/- 0.3) x 10(7) M(-1)s(-1), and is among the highest rate constants measured for (*)NO(2) with any biomolecule at pH 7.4. The interconversion among the various oxidation states of myoglobin that is prompted by nitrogen oxide species is remarkable. The reaction of MbFe(II)O(2) with (*)NO(2) forms MbFe(III)OONO(2), which undergoes rapid heterolysis along the O-O bond to yield MbFe(V)=O and NO(3-). The perferryl-myoglobin (MbFe(V)=O) transforms rapidly into the ferryl species that has a radical site on the globin ((*)MbFe(IV)=O). The latter oxidizes another oxymyoglobin (10(4) M(-1)s(-1) < k(17) < 10(7) M(-1)s(-1)) and generates equal amounts of ferrylmyoglobin and metmyoglobin. At much longer times, the ferrylmyoglobin disappears through a relatively slow comproportionation with oxymyoglobin (k(18) = 21.3 +/- 5.3 M(-1)s(-1)). Eventually, each (*)NO(2) radical converts three oxymyoglobin molecules into metmyoglobin. The same intermediate, namely MbFe(III)OONO(2), is also formed via the reaction peroxynitrate (O(2)NOO(-)/O(2)NOOH) with metmyoglobin (k(19) = (4.6 +/- 0.3) x 10(4) M(-1)s(-1)). The reaction of (*)NO(2) with ferrylmyoglobin (k(20) = (1.2 +/- 0.2) x 10(7) M(-1)s(-1)) yields MbFe(III)ONO(2), which in turn dissociates (k(21) = 190 +/- 20 s(-1)) into metmyoglobin and NO(3-). This rate constant was found to be the same as that measured for the decay of the intermediate formed in the reaction of MbFe(II)O(2) with (*)NO, which suggests that MbFe(III)ONO(2) is the intermediate observed in both processes. This conclusion is supported by thermokinetic arguments. The present results suggest that hemeproteins may detoxify (*)NO(2) and thus preempt deleterious processes, such as nitration of proteins. Such a possibility is substantiated by the observation that the reactions of (*)NO(2) with the various oxidation states of myoglobin lead to the formation of metmyoglobin, which, though not functional in the gas transport, is nevertheless nontoxic at physiological pH.  相似文献   

15.
《Electroanalysis》2004,16(8):640-643
Nitric oxide (NO) is an important molecule in many different physiological phenomena. Investigation of nitric oxide production in vivo requires a specialized sensor capable of real‐time concentration measurement, with a high spatial resolution of NO gas production. In this study, a flexible microsensor is developed specifically for measurement of production of nitric oxide. The new sensor consists of a Pt/Ir working electrode coupled with an integrated Ag/AgCl reference electrode. The sensor is coated with a series of NO‐selective membrane polymers to prevent potential amperometric response due to interfering species. Presented experimental data demonstrates the ability for NO detection between 100 and 400 nM concentrations with a linear response (R2=0.9997). The detection limit of the sensor is 2.14 nM (S/N=3). Various selectivity experiments are indicative of a resistance to interfering species such as dopamine, norepinephrine, L ‐arginine.  相似文献   

16.
Two fluorescent ligands, 3,5-dimethyl-4-(6'-sulfonylammonium-1'-azonaphthyl)pyrazole (dmpzn, 1) and 3,5-dimethyl-4-(4'-N,N'-dimethylaminoazophenyl)pyrazole (dmpza, 2) were obtained by condensation of ketoenolic derivatives with hydrazine. 1 and 2 formed the novel dinuclear complexes [(H(2)O)(3)ClRu(micro-L)(2)RuCl(H(2)O)(3)] (3 or 4) and [(H(2)O)(NO)Cl(2)Ru(micro-L)(2)RuCl(2)(NO)(H(2)O)] (6 or 7) (where L 1 = 2 or , respectively) which were characterized by IR, NMR and elemental analysis. The nitrosyl complexes were prepared by bubbling purified nitric oxide through methanol solutions of the corresponding ruthenium(II) chloroderivative or by reaction of the appropriate ligands with Ru(NO)Cl(3). Complexes 3 and 4 were found to bind NO, resulting in an increase in fluorescence. Ligand 1 also formed the mononuclear nitrosyl complex [Ru(NO)(bpy)(2)(dmpzn)]Cl(2) (8) which released NO in water at physiological pH and in the solid state as revealed by fluorescence and IR measurements, respectively.  相似文献   

17.
Tsikas D 《The Analyst》2011,136(5):979-987
Nitric oxide (˙NO) and superoxide (O(2)(-)˙) are ubiquitous in nature. Their reaction product peroxynitrite (ONOO(-)) and notably its conjugated peroxynitrous acid (ONOOH) are highly unstable in aqueous phase. ONOO(-)/ONOOH (referred to as peroxynitrite) isomerize and decompose to NO(3)(-), NO(2)(-) and O(2). Here, we report for the first time GC-MS and HPLC methods for the analysis of peroxynitrite in aqueous solution. For GC-MS analysis peroxynitrite in alkaline solution was derivatized to a pentafluorobenzyl derivative using pentafluorobenzyl bromide. O(15)NOO(-) was synthesized from H(2)O(2) and (15)NO(2)(-) and used as internal standard. HPLC analysis was performed on stationary phases consisting of Nucleosil? 100-5C(18)AB or Nucleodur? C(18) Gravity. The mobile phase consisted of a 10 mM aqueous solution of tetrabutylammonium hydrogen sulfate and had a pH value of 11.5. UV absorbance detection at 300 nm was used. HPLC allows simultaneous analysis of ONOO(-), NO(2)(-) and NO(3)(-). The GC-MS and HPLC methods were used to study stability, synthesis, formation from S-[(15)N]nitrosoglutathione (GS(15)NO) and KO(2), and isomerization/decomposition of peroxynitrite to NO(2)(-) and NO(3)(-) in aqueous buffer.  相似文献   

18.
Nitric oxide has played an important role in many physiological and pathological processes as a kind of important gas signal molecules. In this work, a new fluorescent probe LysoNO-Naph for detecting NO in lysosomes based on 1,8-naphthalimide was reported. LysoNO-Naph has sub-groups of o-phenylenediamine as a NO reaction site and 4-(2-aminoethyl)-morpholine as a lysosome-targetable group. This probe exhibited good selectivity and high sensitivity (4.57 μmol/L) toward NO in a wide pH range from 4 to 12. Furthermore, LysoNO-Naph can be used for imaging NO in lysosomes in living cells.  相似文献   

19.
A novel class of water-soluble iron nitrosyl complexes has been developed for use as NO donor prodrugs. To elaborate these NO prodrugs various water-soluble ligands were used such as P(CH2OH)3, 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane (PTA), 1,2-bis[bis(hydroxymethyl)phosphino]ethane (HMPE), 1,2-bis[bis(hydroxymethyl)phosphino]benzene (TMBz), cysteamine, cysteamine hydrochloride, L-cysteine ethyl ester hydrochloride (LCEE) and pyrimidine-2-thiol (pyrim). The mononuclear complexes Fe(NO)2P(CH2OH)3Cl , Fe(NO)2(P(CH2OH)3)2, Fe(NO)2(PTA)2, Fe(NO)2HMPE , Fe(NO)2TMBz , [Fe(NO)2pyrimI] , [Fe(NO)3P(CH2OH)3][X] (X=PF6, SbF6, BF4) and the dinuclear species [Fe(NO)2S(CH2)2NH3Cl]2, [Fe(NO)2S(CH2)2NH3I2] , [Fe(NO)2LCEE]2 and [Fe(NO)2pyrim]2 were obtained. Complexes , , , , , , and are water-soluble. , and were identified as nitroxyl and , , , and as nitric oxide donors by applying an EPR NO-trap assay. To determine the amount of nitric oxide which was released from the nitric oxide donors, an additional electrochemical methodology was used. The equilibrium release or the trapping concentration of NO was also studied by a UV-vis method, which allowed the rate constant of NO release to be determined.  相似文献   

20.
The growing evidence that nitroxyl (HNO) has a rich pharmacological potential that differs from that of nitric oxide (NO) has intensified interest in HNO donors. Recently, the diazeniumdiolate (NONOate) based on isopropylamine (IPA/NO; Na[(CH(3))(2)CHNH(N(O)NO)]) was demonstrated to function under physiological conditions as an organic analogue to the commonly used HNO donor Angeli's salt (Na(2)N(2)O(3)). The decomposition mechanism of Angeli's salt is dependent on pH, with transition from an HNO to an NO donor occurring abruptly near pH 3. Here, pH is shown to also affect product formation from IPA/NO. Chemical analysis of HNO and NO production led to refinement of an earlier, quantum mechanically based prediction of the pH-dependent decomposition mechanisms of primary amine NONOates such as IPA/NO. Under basic conditions, the amine proton of IPA/NO is able to initiate decomposition to HNO by tautomerization to the nitroso nitrogen (N(2)). At lower pH, protonation activates a competing pathway to NO production. At pH 8, the donor properties of IPA/NO and Angeli's salt are demonstrated to be comparable, suggesting that at or above this pH, IPA/NO is primarily an HNO donor. Below pH 5, NO is the major product, while IPA/NO functions as a dual donor of HNO and NO at intermediate pH. This pH-dependent variability in product formation may prove useful in examination of the chemistry of NO and HNO. Furthermore, primary amine NONOates may serve as a tunable class of nitrogen oxide donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号