首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Real-time observation of a morphologies of a multi-component tubular giant vesicle (tGV), which is a self-assembly composed of plural amphiphiles with different packing parameters, was carried out under application of a magnetic field. A tGV, one of the terminals of which was fixed to a bottom of a cell, exhibited the bending deformation under a magnetic field along the perpendicular direction of the long axis. Moreover, the hysteretic behavior in this deformation was observed associated with the increase and decrease of the magnetic fields repeatedly, regardless of the presence or absence of a paramagnetic species. To understand the hysteretic behavior, the molecular cooperative effect, which stabilizes the bending deformation by replacing of the plural kinds of amphiphiles with different packing parameters within a membrane, must be taken into consideration.  相似文献   

2.
Elucidating the assembly mechanism of the collagen at interfaces is important. In this work, the structures of type I collagen molecules adsorbed on bare mica and on LB films of propanediyl-bis(dimethyloctadecylammonium bromide) transferred onto mica at zero surface pressure was characterized by AFM. On mica, the granular morphologies randomly distributed as elongated structures were observed, which were resulted from the interlacement of the adsorbed collagen molecules. On the LB films, the topographical evolution of the adsorbed collagen layers upon the increasing adsorption time was investigated. After 30 s, the collagen assembled into network-like structure composed of the interwoven fibrils, called as the first adlayer, which was attributed to its adsorption on the LB film by means of a limited number of contact points followed by the lateral association. One minute later, the second adlayer was observed on the top of the first adlayer. Up to 5 min, collagen layers, formed by inter-twisted fibrils, were observed. Under the same conditions after 1 min adsorption on LB film, the AFM image of the layer obtained in the diluted hydrochloric acid solution is analogous to the result of the sample dried in air, indicating that it is the LB film that leads to the formation of the network structure of collagen and the formation of the network structures of collagen layers is tentatively ascribed to the self-assembly of type I collagen molecules on LB film, not to the dewetting of the collagen solution during drying.  相似文献   

3.
Two kinds of Gemini surfactant monolayer, which showed different hydrophobic property, were selected as adsorption substrates for collagen. The topographic images of collagen were investigated by using an atomic force microscopy (AFM). Their auto-organized nano-structures were influenced by the property of substrate and the process of sample preparation, such as concentration of collagen solution, adsorption time and drying condition. Network-like structures formed on the both Gemini monolayers. With increasing concentration of collagen solution and adsorption time, the density of the network-like structure increased and their strands became wider and the mesh sizes decreased apparently. Contrary to the reference, the network-like structures of collagen also formed on the less hydrophobic Gemini surfactant monolayer even after very short adsorption time, which was considered to result from the more hydrophobic patch on it.  相似文献   

4.
A key issue of micro/nano devices is how to integrate micro/nanostructures with specified chemical components onto various curved surfaces. Hydrodynamic printing of micro/nanostructures on three-dimensional curved surfaces is achieved with a strategy that combines template-induced hydrodynamic printing and self-assembly of nanoparticles (NPs). Non-lithography flexible wall-shaped templates are replicated with microscale features by dicing a trench-shaped silicon wafer. Arising from the capillary pumped function between the template and curved substrates, NPs in the colloidal suspension self-assemble into close-packed micro/nanostructures without a gravity effect. Theoretical analysis with the lattice Boltzmann model reveals the fundamental principles of the hydrodynamic assembly process. Spiral linear structures achieved by two kinds of fluorescent NPs show non-interfering photoluminescence properties, while the waveguide and photoluminescence are confirmed in 3D curved space. The printed multiconstituent micro/nanostructures with single-NP resolution may serve as a general platform for optoelectronics beyond flat surfaces.  相似文献   

5.
Collagen is an important and widely used biomaterial and therapeutic. The construction of large-scale collagen structures via the self-assembly of small collagen-related peptides has been extensively studied in the past decade. Here, we report a highly effective and simple means to assemble small synthetic collagen-related peptides into various higher-order structures by utilizing metal-histidine coordination. In this work, two short collagen-related peptides in which histidine residues were incorporated as metal binding sites were designed and chemically synthesized: HG(PPG)(9)GH (X9) and HG(PPG)(4)(PHG)(PPG)(4)GH (PHG). Circular dichroism measurements indicated that these two peptides form only marginally stable collagen triple helices but that their stability can be increased upon the addition of metal ions. Dynamic light scattering analyses, turbidity measurements, TEM, and SEM results demonstrated the metal ion-dependent self-assembly of X9 and PHG into supramolecular structures ranging from various nanofibrils to microscale spherical, laminated, and granulated assemblies. The topology and size of these higher-order structures depends both on the metal ion identity and the location of the binding sites. Most intriguingly, the assembled fibrils show similar D-periodicity to that of natural collagen. Our results demonstrate that metal-histidine coordination can serve as an effective force to induce the self-assembly of unstable collagen-related peptides into higher-order structures.  相似文献   

6.
胶原蛋白组装过程原子力显微镜的观测   总被引:1,自引:0,他引:1  
阐述一种特殊胶原蛋白物质的组装过程,即加入1α-酸性醣蛋白后形成的纤维长距胶原蛋白.通过透析改变胶原蛋白溶液与α1-酸性醣蛋白混合液的pH值,在不同的pH值阶段利用原子力显微镜法(AFM)来辨析稳定的中间结构,获得可靠且分辨率高的样品图像.从而观察到了每个阶段中间纤维的形态和直径.结果表明纤维长距胶原蛋白形成过程中存在明显的中间体.  相似文献   

7.
Kekule structures of different carbon species have been determined. On the basis of Kekule structure and C-C bond counts as well as the surface curvature, stability of diverse carbon species, driving force for curling of graphite fragments and formation of fullerenes and nanotubes, have been discussed. Curling of graphite flat fragments, end-capping of nanotubes, and closure of curved structures are driven by a tremendous increase in Kekule structures as terminal carbon atoms couple their dangling bonds into C-C o bonds. The increasing tendency becomes particularly striking for large cages and nanotubes. Resonance among numerous Kekule structures will stabilize the curved structure and dominate formation of closed carbon species. For similar carbon cages with comparable Kekule structure counts in magnitude, the surface curvature of carbon cages, as a measure for the strain energy, also plays an important role in determining their most stable forms.  相似文献   

8.
A key issue of micro/nano devices is how to integrate micro/nanostructures with specified chemical components onto various curved surfaces. Hydrodynamic printing of micro/nanostructures on three‐dimensional curved surfaces is achieved with a strategy that combines template‐induced hydrodynamic printing and self‐assembly of nanoparticles (NPs). Non‐lithography flexible wall‐shaped templates are replicated with microscale features by dicing a trench‐shaped silicon wafer. Arising from the capillary pumped function between the template and curved substrates, NPs in the colloidal suspension self‐assemble into close‐packed micro/nanostructures without a gravity effect. Theoretical analysis with the lattice Boltzmann model reveals the fundamental principles of the hydrodynamic assembly process. Spiral linear structures achieved by two kinds of fluorescent NPs show non‐interfering photoluminescence properties, while the waveguide and photoluminescence are confirmed in 3D curved space. The printed multiconstituent micro/nanostructures with single‐NP resolution may serve as a general platform for optoelectronics beyond flat surfaces.  相似文献   

9.
The temperature dependences of heat capacity for water–denaturated biopolymer (globular proteins, collagen and DNA) were measured in a wide range of temperatures (0–140°C) and water content of the systems. It has been shown that thermally denaturated globular proteins (lysozyme, myoglobin and catalase) are able to form the thermoreversible heat-set structures under the certain conditions studied. The additional endothermal maximum observed is the calorimetric manifestation of the phase transition related to the melting of these thermotropic non-native structures. The melting gels are completely formed just after denaturation during relatively short time and only their prolonged state at T>T d leads to their transformation to thermoirreversible non-melting ones. The post denaturated structures from water-denaturated protein (Mb, Lys and RN-ase) systems with a different amount of free water were also studied. The thermoreversible cold-set gels are formed from both water-denaturated DNA and water-denaturated collagen systems. These thermotropic structures are metastable. A spatial gel network of both collagen and DNA is formed from the native-like renaturated structures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
A method was proposed to visualize collective displacements of particles in diffusion motion in liquids. Using this method, in molecular dynamics models of liquid argon, groups of collectively moving atoms were detected, which had the shape of long curved flows, often appearing as vortex-like structures. These structures are revealed only by considering movements of atoms over long time intervals, on the order of tens and hundreds of picoseconds, and over long distances, on the order of tens of nanometers.  相似文献   

11.
Funnel‐like sponges of collagen incorporated with glycosaminoglycan (GAG) were prepared by freeze‐drying using ice particulates as templates. The funnel‐like collagen‐GAG sponges showed similar porous structures to those of funnel‐like collagen sponges. The funnel‐like collagen‐GAG and collagen sponges have one top surface layer and one bulk porous layer. The large, top surface pores were determined by ice particulates that were used as templates, and the inner bulk pores were determined by freezing temperature. The funnel‐like pore structures facilitated homogenous cell distribution, improved cell viability, and resulted in homogenous tissue formation. Incorporation of GAG increased the mechanical property and cell viability of collagen sponges.

  相似文献   


12.
In the last years, adsorbed collagen was shown to form layers with a supramolecular organization depending on the substrate surface properties and on the preparation procedure. If the concentration of collagen and the duration of adsorption are sufficient, fibrillar collagen structures are formed, corresponding to assemblies of a few molecules. This occurs more readily on hydrophobic compared to hydrophilic surfaces. This study aims at understanding the origin of such fibrillar structures and in particular at determining whether they result from the deposition of fibrils formed in solution or from the building of assemblies at the interface. Therefore, type I collagen solutions with an increasing degree of aggregation were prepared, using the “neutral-start” approach, by ageing pH 5.8 solutions at 37 °C for 15 min, 2 or 7 days. The obtained solutions were used to investigate the influence of collagen aggregation in solution on the supramolecular organization of adsorbed collagen layers, which was characterized by X-ray photoelectron spectroscopy and atomic force microscopy. Polystyrene and plasma-oxidized polystyrene were chosen as substrates for the adsorption. The size and the density of collagen fibrils at the interface decreased upon increasing the degree of aggregation of collagen in solution. This is explained by a competitive adsorption process between monomers and aggregates of the solution, turning at the advantage of the monomers. More aggregated solutions, which are thus depleted in free monomers, behave like less concentrated solutions, i.e. lead to a lower adsorbed amount and less fibril formation at the interface. This study shows that the supramolecular fibrils observed in adsorbed collagen layers, especially on hydrophobic substrates, are not formed in the solution, prior to adsorption, but are built at the interface, through the assembly of free segments of adsorbed molecules.  相似文献   

13.
Summary: Polymersomes are self assembled vesicles composed of fully synthetic amphiphilic diblock copolymers. Many of their properties are similar to lipid vesicles, although with often higher thermal and mechanical stability within their curved membrane. Incorporation of nanosized objects into their hydrophilic interior or hydrophobic membrane represents an important method for functionalization of these biomimetic structures. We report on the embedding of hydrophobic gold nanoparticles (Au-NPs) into polymersomes. Nanoparticles were prepared and incorporated into polymersomes made by standard film rehydration techniques from commercially available diblock copolymers. Characterization of the resulting structures was achieved by dynamic light scattering (DLS) and by TEM. Results on the preparation method, its influence on the polymersome stability and the application of these new membrane-mimetics are reported.  相似文献   

14.
We report the synthesis and optical characterization of two new photoactivators and demonstrate their use for multiphoton excited three-dimensional free-form fabrication with proteins. These reagents were developed with the goal of cross-linking Type 1 collagen. This cross-linking process produces structures on the micron and submicron size scales. A rose bengal diisopropyl amine derivative combines the classic photoactivator and co-initiator system into one molecule, reducing the reaction kinetics and increasing cross-linking efficiency. This derivative was successful at producing stable structures from collagen, whereas rose bengal alone was not effective. A benzophenone dimer connected by a flexible diamine tether was also synthesized. This activator has two photochemically reactive groups and is highly efficient in cross-linking bovine serum albumin and Type 1 collagen to form stable, robust structures. This approach is more flexible in terms of cross-linking a variety of proteins than by traditional benzophenone photochemistry. The photophysical properties vary greatly from that of benzophenone, with the appearance of a new, lower energy absorption band (lambda max approximately 370 nm in water) and broad, visible emission band (approximately 500 nm maximum). This absorption band is highly solvatochromic, suggesting it arises, at least in part, from a charge transfer interaction. Collagens are typically difficult to cross-link photochemically, and the results here suggest that these two new activators will be suitable for cross-linking other forms of collagen and additional proteins for biomedical applications such as the de novo assembly of biomimetic tissue scaffolds.  相似文献   

15.
Collagen forms the well characterized triple helical secondary structure, stabilized by interchain H-bonds. Here we have investigated the stability of fully optimized collagen triple helices and beta-pleated sheets by using first principles (ab initio and DFT) calculations so as to determine the secondary structure preference depending on the amino acid composition. Models composed of a total of 18 amino acid residues were studied at six different amino acid compositions: (i) L-alanine only, (ii) glycine only, (iii) L-alanines and glycine, (iv) L-alanines and D-alanine, (v) L-prolines with glycine, (vi) L-proline, L-hydroxyproline, and glycine. The last two, v and vi, were designed to mimic the core part of collagen. Furthermore, ii, iii, and iv model the binding and/or recognition sites of collagen. Finally, i models the G-->A replacement, rare in collagen. All calculated structures show great resemblance to those determined by X-ray crystallography. Calculated triple helix formation affinities correlate well with experimentally determined stabilities derived from melting point (T(m)) data of different collagen models. The stabilization energy of a collagen triple helical structure over that of a beta-pleated sheet is 2.1 kcal mol(-1) per triplet for the [(-Pro-Hyp-Gly-)(2)](3) collagen peptide. This changes to 4.8 kcal mol(-1) per triplet of destabilization energy for the [(-Ala-Ala-Gly-)(2)](3) sequence, known to be disfavored in collagen. The present study proves that by using first principles methods for calculating stabilities of supramolecular complexes, such as collagen and beta-pleated sheets, one can obtain stability data in full agreement with experimental observations, which envisage the applicability of QM in molecular design.  相似文献   

16.
The formamidoxime configurational Z isomer coupled with the pyridylbiscarboxamide conformational codon were used to fold planar, curved structures. When embedded into macrocycles, this folded motif promotes dimerization through π-π stacking and hydrogen-bonding and the formation of tubules akin to molecular channels in the solid state.  相似文献   

17.
《Electrophoresis》2017,38(3-4):525-532
This paper reports the numerical study of the one‐step faithful replication of micro/nano‐scale structures on a fiber surface by using the electrohydrodynamic instability patterning (EHDIP) process. By employing a rigorous numerical analysis method, conditions are revealed under which the faithful replication of a pattern can be achieved from a curved master electrode. It is found that the radius of curvature of the fiber plays an important role in determining the final morphology of the pattern when the destabilizing electric field is dominant in both the flat and patterned template cases. In general, stronger electric fields and larger radii of curvature of the substrate are favorable for the faithful replication of the pattern. In addition, theoretical analysis shows that higher aspect ratio of micro/nanostructures can be obtained on curved surfaces by using a master with a much lower aspect ratio. The results demonstrated in this study aims to provide guidelines for the faithful fabrication of micro/nanostructures on curved surfaces by the EHDIP process.  相似文献   

18.
Guided by the symmetry in a natural way, periodic potential surfaces partition the space in solid crystalline compounds. The arrangement of atoms, clusters and molecules obviously follows the (in general) curved shape of these ‘space partitioners’. In structures, the atoms therefore choose only a very limited subset of the infinite set of possible positions. In collective structures the periodic surfaces separate areas of different interactions between atoms, clusters, and molecules. In a certain sense, they can be considered as inner surfaces, a knowledge of which reveals insights into the organization of crystalline matter. There are many good indications that the weakly bonded electrons in the highest occupied orbitals are preferably localized in the region of the space partitioners. Dynamic processes as well can be correlated to the shape of the periodic surfaces. Moreover, the surfaces are didactically very helpful in making accessible the complicated three-dimensional relations in collective structures because the main features are projected onto (although curved) two-dimensional creations. The application of periodic potential surfaces to such a variety of compounds as quartz, brass and alpha-amylose underscores their general significance. Simple qualitative considerations already reveal the manifold relations to animate and inanimate nature through to mathematics, art and architecture. It appears that, in a very universal sense, the adaption of structures to a collective order finds a natural solution through curvature.  相似文献   

19.
In this study, we extend the concept of constructing high-genus fullerenes with neck-like structures to the classification of a wide family of doubly periodic graphitic structures. The neck structures are obtained by peeling the outer (positively curved) part of a toroidal carbon nanotube off, meanwhile leaving the central hole unchanged. A doubly periodic structure is then characterized by the original tiling and the shape of the necks used. Through the consideration of the coloring problem of uniform tilings, a systematic method of constructing similar structures with periodicities along all three dimensions is developed. The P type Schwarzite, extensively studied in the literature, can be classified within the scheme if the shape of the necks is carefully chosen.  相似文献   

20.
Monolayers of enantiomeric compounds as well as diastereomeric mixtures and racemic/diastereomeric mixtures of ethyl 2-azido-4-fluoro-3-hydroxystearates have been investigated using surface pressure-area isotherms and Brewster angle microscopy. All monolayers collapse out of the liquid-expanded phase, forming 3D collapse structures which were visualized with scanning force microscopy. The enantiomeric compound and the diastereomeric mixtures form unique fiber-like network structures with heights between 20 and 40 nm. Interestingly, the shape of the enantiomeric fiber structures is straight, whereas the diastereomeric mixtures exhibit curved fibers of different sizes. The racemic mixture however forms circular 10 nm high and 20-50 microm broad structures. The shape of unconventional collapse structures could be changed by using distinct ratios of diastereomeric or racemic/diastereomeric mixed compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号