首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The NMSSM contains a Higgs singlet in addition to the two Higgs doublets typical of the MSSM, thus resulting in a total of seven physical Higgs mass states. Therefore, the phenomenology of the NMSSM Higgs sector can differ considerably from that of the MSSM, and there are good prospects of finding in regions of the NMSSM parameter space Higgs signals that cannot be reproduced in the MSSM. We examined here the two-photon decay mode of a Higgs boson and found that up to three neutral Higgs states, heavy and/or light, could be simultaneously observable at the LHC, a possibility precluded to the MSSM. There are also some possibilities that only the lightest NMSSM Higgs boson be detectable via this mode, with a mass beyond the upper limit of the corresponding MSSM state, thus also allowing one to distinguish between the two scenarios. However, in most of the NMSSM parameter space the configurations of the non-minimal model are not very different from those arising in the minimal case.  相似文献   

2.
The Higgs sectors of supersymmetric extensions of the Standard Model have two doublets in the minimal version (MSSM), and two doublets plus a singlet in two others: with (UMSSM) and without (NMSSM) an extra U(1)′. A very concise comparison of these three models is possible if we assume that the singlet has a somewhat larger breaking scale compared to the electroweak scale. In that case, the UMSSM and the NMSSM become effectively two-Higgs-doublet models (THDM), like the MSSM. In this approach the well-known upper mass bounds on the lightest CP-even neutral Higgs boson can be derived in a very simple and transparent way.  相似文献   

3.
The recent LHC indications of a SM-like Higgs boson near 125 GeV are consistent not only with the Standard Model (SM) but also with Supersymmetry (SUSY). However naturalness arguments disfavour the Minimal Supersymmetric Standard Model (MSSM). We consider the Next-to-Minimal Supersymmetric Standard Model (NMSSM) with a SM-like Higgs boson near 125 GeV involving relatively light stops and gluinos below 1 TeV in order to satisfy naturalness requirements. We are careful to ensure that the chosen values of couplings do not become non-perturbative below the grand unification (GUT) scale, although we also examine how these limits may be extended by the addition of extra matter to the NMSSM at the two-loop level. We then propose four sets of benchmark points corresponding to the SM-like Higgs boson being the lightest or the second lightest Higgs state in the NMSSM or the NMSSM-with-extra-matter. With the aid of these benchmark points we discuss how the NMSSM Higgs boson near 125 GeV may be distinguished from the SM Higgs boson in future LHC searches.  相似文献   

4.
We confront the discovery of a boson decaying into two photons, as reported recently by ATLAS and CMS, with the corresponding predictions in the Minimal Supersymmetric Standard Model (MSSM) and the Next-to-Minimal Supersymmetric Standard Model (NMSSM). We perform a scan over the relevant regions of parameter space in both models and evaluate the MSSM and NMSSM predictions for the dominant Higgs production channel and the photon–photon decay channel. Taking into account the experimental constraints from previous direct searches, flavor physics, electroweak measurements as well as theoretical considerations, we find that a Higgs signal in the two photon channel with a rate equal to, or above, the SM prediction is viable over the full mass range 123?M H ?127 GeV, both in the MSSM and the NMSSM. We find that besides the interpretation of a possible signal at about 125 GeV in terms of the lightest $\mathcal {CP}$ -even Higgs boson, both the MSSM and the NMSSM permit also a viable interpretation where an observed state at about 125 GeV would correspond to the second-lightest $\mathcal {CP}$ -even Higgs boson in the spectrum, which would be accompanied by another light Higgs with suppressed couplings to W and Z bosons. We find that a significant enhancement of the γγ rate, compatible with the signal strengths observed by ATLAS and CMS, is possible in both the MSSM and the NMSSM, and we analyse in detail different mechanisms in the two models that can give rise to such an enhancement. We briefly discuss also our predictions in the two models for the production and subsequent decay into two photons of a $\mathcal {CP}$ -odd Higgs boson.  相似文献   

5.
We summarize recent work in which we attempt to make consistent models of LHC physics, from the Pyramid Scheme. The models share much with the NMSSM, in particular, enhanced tree level contributions to the Higgs mass and a preference for small tan??. There are three different singlet fields, and a new strongly coupled gauge theory, so the constraints of perturbative unification are quite different. We outline our general approach to the model, which contains a K?hler potential for three of the low energy fields, which is hard to calculate. Detailed calculations, based on approximations to the K?hler potential, will be presented in a future publication.  相似文献   

6.
Using the formatlism developed by Samuel and Wess a general form of the Higgs potential in nonlinearly realized supersymmetric extention of the Standard Model in curved space is constructed. In flat space limit we derive bounds for Higgs boson masses and mass relations. Comparisons to the linear supersymmetric models MSSM and NMSSM are made.  相似文献   

7.
We consider extensions of the next-to-minimal supersymmetric model (NMSSM) in which the observed neutrino masses are generated through a TeV scale inverse seesaw mechanism. The new particles associated with this mechanism can have sizable couplings to the Higgs field which can yield a large contribution to the mass of the lightest CP-even Higgs boson. With this new contribution, a 126 GeV Higgs is possible along with order of 200 GeV masses for the stop quarks for a broad range of tan β. The Higgs production and decay in the diphoton channel can be enhanced due to this new contribution. It is also possible to solve the little hierarchy problem in this model without invoking a maximal value for the NMSSM trilinear coupling and without severe restrictions on the value of tan β.  相似文献   

8.
Within the framework of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) we study neutralino production (i,j=1, …, 5) at center-of-mass energies between 100 and 600 GeV and the decays of the heavier neutralinos into the LSP plus a fermion pair, a photon or a Higgs boson. For representative gaugino/higgsino mixing scenarios, where the light neutralinos have significant singlet components, we find some striking differences between the NMSSM and the minimal supersymmetric model. Since in the NMSSM neutralino and Higgs sector are strongly correlated, the decay of the second lightest neutralino into a Higgs boson and the LSP often is kinematically possible and even dominant in a large parameter region of typical NMSSM scenarios. Also, the decay rates into final states with a photon may be enhanced.  相似文献   

9.
Determining the global minimum of Higgs potentials with several Higgs fields like the next-to-minimal supersymmetric extension of the standard model (NMSSM) is a non-trivial task already at the tree level. The global minimum of a Higgs potential can be found from the set of all its stationary points defined by a multivariate polynomial system of equations. We introduce here the algebraic Groebner basis approach to solve this system of equations. We apply the method to the NMSSM with CP-conserving as well as CP-violating parameters. The results reveal an interesting stationary-point structure of the potential. Requiring the global minimum to give the electroweak symmetry breaking observed in Nature excludes large parts of the parameter space.  相似文献   

10.
Nowadays, in the MSSM, the moderate values of tan β are almost excluded by the LEP II lower bound on the mass of the lightest Higgs boson. In the next-to-minimal supersymmetric standard model (NMSSM), the theoretical upper bound on it increases and reaches a maximal value in the limit of strong Yukawa coupling, where all solutions to renormalization-group equations are concentrated near the quasifixed point. For a calculation of the Higgs boson spectrum, the perturbation-theory method can be applied. We investigate the particle spectrum within the modified NMSSM, which leads to the self-consistent solution in the limit of strong Yukawa coupling. This model allows one to get m h~125 GeV at tan β≥1.9. In the model under investigation, the mass of the lightest Higgs boson does not exceed 130.5±3.5 GeV. The upper bound on the mass of the lightest CP-even Higgs boson in more complicated supersymmetric models is also discussed.  相似文献   

11.
G. Degrassi  P. Slavich   《Nuclear Physics B》2010,825(1-2):119-150
We provide a full one-loop calculation of the self energies and tadpoles of the neutral Higgs bosons of the NMSSM. In addition, we compute the two-loop corrections to the neutral Higgs boson masses in the effective potential approximation. With respect to earlier calculations, the newly-computed corrections can account for shifts of a few GeV in the light scalar and pseudoscalar masses, and they can also sizeably affect the mixing between singlet and MSSM-like Higgs scalars. Taking these corrections into account will be crucial for a meaningful comparison between the MSSM and NMSSM predictions for the Higgs sector.  相似文献   

12.
The particle discovered in the Higgs-boson searches at the LHC with a mass of about \(125 \, \mathrm{GeV}\) can be identified with one of the neutral Higgs bosons of the Next-to-Minimal Supersymmetric Standard Model (NMSSM). We calculate predictions for the Higgs-boson masses in the NMSSM using the Feynman-diagrammatic approach. The predictions are based on the full NMSSM one-loop corrections supplemented with the dominant and sub-dominant two-loop corrections within the Minimal Supersymmetric Standard Model (MSSM). These include contributions at \(\mathcal {O}{(\alpha _t \alpha _s, \alpha _b \alpha _s, \alpha _t^2,\alpha _t\alpha _b)}\), as well as a resummation of leading and subleading logarithms from the top/scalar top sector. Taking these corrections into account in the prediction for the mass of the Higgs boson in the NMSSM that is identified with the observed signal is crucial in order to reach a precision at a similar level as in the MSSM. The quality of the approximation made at the two-loop level is analysed on the basis of the full one-loop result, with a particular focus on the prediction for the Standard Model-like Higgs boson that is associated with the observed signal. The obtained results will be used as a basis for the extension of the code FeynHiggs to the NMSSM.  相似文献   

13.
Shuai Xu  Sibo Zheng 《中国物理C(英文版)》2023,47(4):043105-043105-8
It is well known that the observed Higgs mass is more naturally explained in the next-to-minimal supersymmetric standard model (NMSSM) than in the minimal supersymmetric standard model. Without any violation of this success, there are variants of the NMSSM that can lead to new phenomenologies. In this study, we propose a new variant of the NMSSM by imposing an unbroken R symmetry. We first identify the minimal structure of such a scenario from the perspective of both simplicity and viability, then compare the model predictions to current experimental limits, and finally highlight the main features that differ from those of well-known scenarios.  相似文献   

14.
We study the implication of triviality on Higgs sector in next to minimal supersymmetric model (NMSSM) using variational field theory. It is shown that the mass of the lightest Higgs boson in NMSSM has an upper bound ∼10M W which is of the same order as that in the standard model.  相似文献   

15.
We assess the extent to which various constrained versions of the NMSSM are able to describe the recent hints of a Higgs signal at the LHC corresponding to a Higgs mass in the range 123–128 GeV.  相似文献   

16.
We review possible properties of Higgs bosons in the NMSSM, which allow to discriminate this model from the MSSM: masses of mostly Standard-Model-like Higgs bosons at or above 140 GeV, or enhanced branching fractions into two photons, or Higgs-to-Higgs decays. In the case of a Standard-Model-like Higgs boson above 140 GeV, it is necessarily accompanied by a lighter state with a large gauge singlet component. Examples for such scenarios are presented. Available studies on Higgs-to-Higgs decays are discussed according to the various Higgs production modes, light Higgs masses and decay channels.  相似文献   

17.
In this work, we make the first study of electroweak baryogenesis(EWBG) based on the LHC data in the CP-violating next-to-minimal supersymmetric model(NMSSM) where a strongly first order electroweak phase transition(EWPT) is obtained in the general complex Higgs potential. With representative benchmark points which pass the current LEP and LHC constraints, we demonstrate the structure of EWPT for those points and how a strongly first order EWPT is obtained in the complex NMSSM where the resulting gravitational wave production properties are found to be within the reaches of future space-based interferometers like BBO and Ultimate-DECIGO. We further calculate the generated baryon asymmetries where the CP violating sources are(1): higgsino-singlino dominated,(2): higgsino-gaugino dominated or(3): from both sources. It is shown that all three representing scenarios could evade the strong constraints set by various electric dipole moments(EDM) searches where cancellations among the EDM contributions occur at the tree level(higgsino-singlino dominated) or loop level(higgsino-gaugino dominated).The 125 GeV SM like Higgs can be either the second lightest neutral Higgs H_2 or the third lightest neutral Higgs H_3. Finally, we comment on the future direct and indirect probe of CPV in the Higgs sector from the collider and EDM experiments.  相似文献   

18.
We consider scenarios in the next-to-minimal supersymmetric model (NMSSM) where the CP-odd and charged Higgs bosons are very light. As we demonstrate, these can be obtained as simple deformations of existing phenomenological MSSM benchmarks scenarios with parameters defined at the weak scale. This offers a direct and meaningful comparison to the MSSM case. Applying a wide set of up-to-date constraints from both high-energy collider and flavor physics, the Higgs boson masses and couplings are studied in viable parts of parameter space. The LHC phenomenology of the light Higgs scenario for neutral and charged Higgs boson searches is discussed.  相似文献   

19.
We search for a non-SM-like CP-odd Higgs boson (a(1)(0)) decaying to tau(+)tau(-) or mu(+)mu(-) in radiative decays of the Upsilon(1S). No significant signal is found, and upper limits on the product branching ratios are set. Our tau(+)tau(-) results are almost 2 orders of magnitude more stringent than previous upper limits. Our data provide no evidence for a Higgs state with a mass of 214 MeV decaying to mu(+)mu(-), previously proposed as an explanation for 3 Sigma(+)-->pmu(+)mu(-) events observed by the HyperCP experiment. Our results constrain NMSSM models.  相似文献   

20.
We discuss the automatised calculation of the Higgs mass in renormalisable supersymmetric models with complex parameters at the two-loop level. Our setup is based on the public codes SARAH and SPheno, which can now compute the two-loop corrections to masses of all neutral scalars in such theories. The generic ansatz for these calculations and the handling of the ‘Goldstone Boson catastrophe’ is described. It is shown that we find perfect agreement with other existing two-loop calculations performed in the \(\overline{\mathrm {DR}}\) scheme. We also use the functionality to derive results for the MSSM and NMSSM not available before: the Higgs mass in the constrained version of the complex MSSM and the impact of CP phases in the two-loop corrections beyond \(O(\alpha _s \alpha _t)\) for the scale-invariant NMSSM are briefly analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号