首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A series of nitroimidazoles were subjected to hydroxymethylations under a variety of conditions. Hydroxymethylation of 1-(2-hydroxyethyl), 1-(2-acetoxyethyl), and 1-(2-chloroethyl) substituted 5-nitroimidazoles with paraformaldehyde in dimethyl sulfoxide yielded the respective 2-hydroxymethyl analogs (5–7). However, attempts to hydroxymethylate 1-(2-hydroxyethyl), 1-(2-acetoxyethyl), 1-(2-cyanoethyl) substituted 4-nitroimidazoles and 1-(2-hydroxyethyl)-2-nitroimidazole were unsuccessful. Treatment of 1-(2-acetoxyethyl)-5-nitro-2-imidazolecar-baldehyde(10) with hydroxylamine-O-sulfonic acid afforded a mixture of corresponding 2-carbonitrile (12) and 2-(N-hydroxy)carboximidamide (13). Hydrolysis of 10 with ethanolic hydrochloric acid yielded 8-ethoxy-5,6-dihydro-3-nitro-8H-imidazo[2,1-c] [1,4]oxazine (11) which, on subsequent reaction with hydroxylamine-O-sulfonic acid, afforded 1-(2-hydroxyethyl)-5-nitroimidazole-2-(N-hydroxy)carboximidamide (15). Reaction of 4(5)-nitroimidazole with chloropropionitrile produced a mixture of the isomeric 1-(2-cyanoethyl) substituted 4- and 5-nitroimidazoles. Treatment of 2,4(5)-dinitroímidazole with chloropropionitrile afforded a mixture of 4(5)-chloro-5(4)-nitroimidazole and 1-(2-cyanoethyl)-4-nitro-5-chloroimidazoIe. Reaction of nitroimidazoles with acrylonitrile in the presence of Triton B yielded the corresponding 1-(2-cyanoethyl) substituted derivatives.  相似文献   

2.
《Tetrahedron》1988,44(13):4009-4022
Regio and stereoselective hydralumination of 1-(chloromethyldimethylsilyl)-1-alkyne with diisobutylaluminium hydride (DIBAH) affords (Z)-1-(chloromethyldimethylsilyl)-1-(diisobutylalumino)-1-alkene. Treatment of the aluminium-substituted vinylsilane with 3 equivalents of methyllithium affords (E)-1-(trimethylsilyl)-2-lithio-2-alkene as a sole product. Reaction of aluminium-substituted vinylsilane with trimethylaluminium in refluxing heptane produces a mixture of (E)-1-trimethyl-silyl-2-alumino-2-alkene and 2-trimethylsilyl-1-alkene. Reaction of 1-(chloromethyldimethylsilyl)-1-alkyne with triisobutylaluminium gives 2-(isobutyldimethylsilyl)-1-alkene exclusively. Reactions of the lithiated allylsilane with several electrophiles give the corresponding carbometallated products, allylsilanes bearing alkyl, allyl, vinyl, or alkoxycarbonyl groups. Protodesilylation of 3-(trimethylsilylmethyl)-1,3-decadiene gives 3-methylene-1-decene selectively. Reaction of trialkylaluminium with trimethylsilylethyne gives bistrimethylsilylated diene by successive addition of silylethyne to the aluminium reagent; in contrast, chloromethyldimethylsilylethyne gives the mono-adduct regio and stereoselectively.  相似文献   

3.
中心为氨基、末端为硝基的苯乙炔树枝状分子的合成   总被引:1,自引:0,他引:1  
将固定相合成与“收敛/发散”方法相结合,合成了第一、二代苯乙炔树枝状分子.通过Heck-Cassar-Sonogashira-Hagihara偶联反应,将其中心和末端分别修饰上供电子的氨基和拉电子的硝基,得到第一、二代中心为氨基、末端为硝基的苯乙炔树枝状分子NH2-G1-(NO2)2和NH2-G2-(NO2)4.用傅里叶变换红外光谱跟踪了整个固定相合成过程.苯乙炔树枝状分子的紫外-可见吸收光谱呈现出规律性变化.  相似文献   

4.
The radical C-glycosidation of (-)-(1S,4R,5R, 6R)-6-endo-chloro-3-methylidene-5-exo-(phenylseleno)-7-ox abi cyclo[2. 2.1]heptan-2-one ((-)-4) with 2,3,4, 6-tetra-O-acetyl-alpha-D-mannopyranosyl bromide gave (+)-(1S,3R,4R, 5R,6R)-6-endo-chloro-5-exo-(phenylseleno)-3-endo-(1',3',4', 5'-tetra-O-acetyl-2', 6'-anhydro-7'-deoxy-D-glycero-D-manno-heptitol-7'-C-yl)-7-oxabi cyc lo[ 2.2.1]hept-2-one ((+)-5) that was converted into (+)-(1R,2S,5R, 6R)-5-acetamido-3-chloro-2-hydroxy-6-(1',3',4',5'-tetra-O-acetyl)-2', 6'-anhydro-7'-deoxy-D-glycero-D-manno-heptitol-7'-C-yl)cyclohex -3-en- 1-yl acetate ((+)-10) and into (+)-(1R,2S,5R, 6S)-5-bromo-3-chloro-2-hydroxy-6-(1',3',4',5'-tetra-O-acetyl-2', 6'-anhydro-7'-deoxy-D-glycero-D-manno-heptitol-7'-C-yl)cyclohex -3-en- 1-yl acetate ((+)-19). Ozonolysis of (+)-10 and further transformations provided 2-acetamido-2,3-dideoxy-3-C-(2', 6'-anhydro-7'-deoxy-D-glycero-D-manno-heptitol-7'-C-yl)-D-galac tos e (alpha-C(1-->3)-D-mannopyranoside of N-acetylgalactosamine (alpha-D-Manp-(1-->3)CH(2)-D-GalNAc): 1). Displacement of the bromide (+)-19 with NaN(3) in DMF provided the corresponding azide ((-)-20) following a S(N)2 mechanism. Ozonolysis of (-)-20 and further transformations led to 2-acetamido-2,3-dideoxy-3-C-(2', 6'-anhydro-7'-deoxy-D-glycero-D-manno-heptitol-7'-C-yl)-D-talose (alpha-C(1-->3)-D-mannopyranoside of N-acetyl D-talosamine (alpha-D-Manp-(1-->3)CH(2)-D-TalNAc): 2). The neutral C-disaccharide 1 inhibits several glycosidases (e.g., beta-galactosidase from jack bean with K(i) = 7.5 microM, alpha-L-fucosidase from human placenta with K(i) = 28 microM, beta-glucosidase from Caldocellum saccharolyticum with K(i) = 18 microM) and human alpha-1, 3-fucosyltransferase VI (Fuc-TVI) with K(i) = 120 microM whereas it 2-epimer 2 does not. Double reciprocal analysis showed that the inhibition of Fuc-TVI by 1 displays a mixed pattern with respect to both the donor sugar GDP-fucose and the acceptor LacNAc with K(i) of 123 and 128 microM, respectively.  相似文献   

5.
The Diels-Alder reactions of 1-substituted-3-(2-nitrovinyl)indoles 3 with quinones and acetylenes give aromatized 1:1 adducts (- nitrous acid) ( 1 ) or (- nitrous acid, -2 hydrogens) 2,5 . Likewise, dimerization (-2 nitrous acids) of 3 gives aromatized 2-(3-indolyl)carbazoles 4 . In contrast, 3 reacts with maleimides 6 to give 1:2 adducts (- nitrous acid or -2 hydrogens) 10 and 11 , respectively, along with smaller amounts of 1:1 adducts (- nitrous acid, -2 hydrogens; or -4 hydrogens) 12 and 13 , respectively. A mechanism for formation of the nitro products 11 and 13 is discussed. A 1:2 adduct (-2 hydrogens) 19 was also obtained from a Diels-Alder reaction between maleimide and the vinylindole produced in situ by condensing 1-methylindole with acetone. The stereochemisty of this 1:2 adduct has been determined by X-ray crystallography.  相似文献   

6.
Synthetic studies are reported that show that the reaction of either H2SnR2 (R = Ph, n-Bu) or HMo(CO)3(Cp) (1-H, Cp = eta(5)-C5H5) with Mo(N[t-Bu]Ar)3 (2, Ar = 3,5-C6H3Me2) produce HMo(N[t-Bu]Ar)3 (2-H). The benzonitrile adduct (PhCN)Mo(N[t-Bu]Ar)3 (2-NCPh) reacts rapidly with H2SnR2 or 1-H to produce the ketimide complex (Ph(H)C=N)Mo(N[t-Bu]Ar)3 (2-NC(H)Ph). The X-ray crystal structures of both 2-H and 2-NC(H)Ph are reported. The enthalpy of reaction of 1-H and 2 in toluene solution has been measured by solution calorimetry (DeltaH = -13.1 +/- 0.7 kcal mol(-1)) and used to estimate the Mo-H bond dissociation enthalpy (BDE) in 2-H as 62 kcal mol(-1). The enthalpy of reaction of 1-H and 2-NCPh in toluene solution was determined calorimetrically as DeltaH = -35.1 +/- 2.1 kcal mol(-1). This value combined with the enthalpy of hydrogenation of [Mo(CO)3(Cp)]2 (1(2)) gives an estimated value of 90 kcal mol(-1) for the BDE of the ketimide C-H of 2-NC(H)Ph. These data led to the prediction that formation of 2-NC(H)Ph via nitrile insertion into 2-H would be exothermic by approximately 36 kcal mol(-1), and this reaction was observed experimentally. Stopped flow kinetic studies of the rapid reaction of 1-H with 2-NCPh yielded DeltaH(double dagger) = 11.9 +/- 0.4 kcal mol(-1), DeltaS(double dagger) = -2.7 +/- 1.2 cal K(-1) mol(-1). Corresponding studies with DMo(CO)3(Cp) (1-D) showed a normal kinetic isotope effect with kH/kD approximately 1.6, DeltaH(double dagger) = 13.1 +/- 0.4 kcal mol(-1) and DeltaS(double dagger) = 1.1 +/- 1.6 cal K(-1) mol(-1). Spectroscopic studies of the much slower reaction of 1-H and 2 yielding 2-H and 1/2 1(2) showed generation of variable amounts of a complex proposed to be (Ar[t-Bu]N)3Mo-Mo(CO)3(Cp) (1-2). Complex 1-2 can also be formed in small equilibrium amounts by direct reaction of excess 2 and 1(2). The presence of 1-2 complicates the kinetic picture; however, in the presence of excess 2, the second-order rate constant for H atom transfer from 1-H has been measured: 0.09 +/- 0.01 M(-1) s(-1) at 1.3 degrees C and 0.26 +/- 0.04 M(-1) s(-1) at 17 degrees C. Study of the rate of reaction of 1-D yielded kH/kD = 1.00 +/- 0.05 consistent with an early transition state in which formation of the adduct (Ar[t-Bu]N)3Mo...HMo(CO)3(Cp) is rate limiting.  相似文献   

7.
In the presence of sulfur dioxide and an acid promoter, (-)-(1E,3Z)-2-methyl-1-((1S)-1-phenylethoxy)penta-1,3-dien-3-yl isobutyrate reacts with (Z)-3-(trimethylsilyloxy)pent-2-ene giving a silyl sulfinate intermediate that undergoes, in the presence of palladium catalyst, a desilylation and retro-ene elimination of SO(2) with formation of (-)-(1Z,2S,3R,4S)-1-ethylidene-2,4-dimethyl-5-oxo-3-((1S)-1-phenylethoxy)-heptyl isobutyrate as major product. This ethyl ketone undergoes cross-aldol reaction with (2S)-2-methyl-3-[(tert-butyldimethylsilyl)oxy]propanal giving an aldol that is reduced into a stereoheptad corresponding to the C(19)-C(27)-segment of Rifamycins with high diastereoselectivity and enantiomeric excess.  相似文献   

8.
The compound [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)6}-closo-2,1-RuCB10H8] 1a reacts with PMe3 or PCy3(Cy = cyclo-C6H11) to give the structurally different species [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)5(PMe3)}-closo-2,1-RuCB10H8] 4 and [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(CO)5(PCy3)}-closo-2,1-RuCB10H8]5, respectively. A symmetrically disubstituted product [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)4(PMe3)2}-closo-2,1-RuCB10H8] 6 is obtained using an excess of PMe3. In contrast, the chelating diphosphines 1,1'-(PPh2)2-Fe(eta-C5H4)2 and 1,2-(PPh2)2-closo-1,2-C2B10H10 react with 1a to yield oxidative-insertion species [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(micro-[1',1'-(PPh2)2-Fe(eta-C5H4)2])(CO)4}-closo-2,1-RuCB10H8] 7 and [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(CO)4(1',2'-(PPh2)2-closo-1',2'-C2B10H10)}-closo-2,1-RuCB10H8] 8, respectively. In toluene at reflux temperatures, 1a with Bu(t)SSBu(t) gives [1-SMe2-2,2-(CO)2-7-(mu-SBu(t))-11-(mu-H)-2,7,11-{Ru2(mu-H)(mu-SBu(t))(CO)4}-closo-2,1-RuCB10H8] 9, and with Bu(t)C [triple bond] CH gives [1-SMe2-2,2-(CO)2-7-{mu:eta2-(E)-CH=C(H)Bu(t)}-11-{mu:eta2-(E)-CH=C(H)Bu(t)}-2,7,11-{Ru2(CO)5}-closo-2,1-RuCB10H8] 10. In the latter, two alkyne groups have inserted into cage B-H groups, with one of the resulting B-vinyl moieties involved in a C-H...Ru agostic bond. Oxidation of 1a with I2 or HgCl2 affords the mononuclear ruthenium complex [1-SMe2-2,2,2-(CO)3-closo-2,1-RuCB10H10] 11.  相似文献   

9.
1-Methyl-2-(2-propenyl)-3-pyrazolidinimine ( 5 ) was obtained by treatment of 3-amino-4,5-dihydro-1-methyl- 1-(2-propenyl)-1H-pyrazolium bromide ( 4 ) with ethanolic sodium ethoxide. Similar treatment of the analogous 2-(2-butenyl) and 2-(3-phenyl-2-propenyl)-substituted salts 12 and 15 gave 1-methyl-2-(1-methyl-2-propenyl)-3- pyrazolidinimine ( 13 ) and 1-methyl-2-(1-phenyl-1-propenyl)-3-pyrazolidinimine ( 16 ) respectively.  相似文献   

10.
Through the use of the Active Thermochemical Tables approach, the best currently available enthalpy of formation of HO2 has been obtained as delta(f)H(o)298 (HO2) = 2.94 +/- 0.06 kcal mol(-1) (3.64 +/- 0.06 kcal mol(-1) at 0 K). The related enthalpy of formation of the positive ion, HO2+, within the stationary electron convention is delta(f)H(o)298 (HO2+) = 264.71 +/- 0.14 kcal mol(-1) (265.41 +/- 0.14 kcal mol(-1) at 0 K), while that for the negative ion, HO2- (within the same convention), is delta(f)H(o)298 (HO2-) = -21.86 +/- 0.11 kcal mol(-1) (-21.22 +/- 0.11 kcal mol(-1) at 0 K). The related proton affinity of molecular oxygen is PA298(O2) = 100.98 +/- 0.14 kcal mol(-1) (99.81 +/- 0.14 kcal mol(-1) at 0 K), while the gas-phase acidity of H2O2 is delta(acid)G(o)298 (H2O2) = 369.08 +/- 0.11 kcal mol(-1), with the corresponding enthalpy of deprotonation of H2O2 of delta(acid)H(o)298 (H2O2) = 376.27 +/- 0.11 kcal mol(-1) (375.02 +/- 0.11 kcal mol(-1) at 0 K). In addition, a further improved enthalpy of formation of OH is briefly outlined, delta(f)H(o)298 (OH) = 8.93 +/- 0.03 kcal mol(-1) (8.87 +/- 0.03 kcal mol(-1) at 0 K), together with new and more accurate enthalpies of formation of NO, delta(f)H(o)298 (NO) = 21.76 +/- 0.02 kcal mol(-1) (21.64 +/- 0.02 kcal mol(-1) at 0 K) and NO2, delta(f)H(o)298 (NO2) = 8.12 +/- 0.02 kcal mol(-1) (8.79 +/- 0.02 kcal mol(-1) at 0 K), as well as H(2)O(2) in the gas phase, delta(f)H(o)298 (H2O2) = -32.45 +/- 0.04 kcal mol(-1) (-31.01 +/- 0.04 kcal mol(-1) at 0 K). The new thermochemistry of HO2, together with other arguments given in the present work, suggests that the previous equilibrium constant for NO + HO2 --> OH + NO2 was underestimated by a factor of approximately 2, implicating that the OH + NO2 rate was overestimated by the same factor. This point is experimentally explored in the companion paper of Srinivasan et al. (next paper in this issue).  相似文献   

11.
In situ hydrothermal reduction of Np(VI) to Np(IV) in the presence of methylenediphosphonic acid (C1P2) results in the crystallization of Np[CH2(PO3)2](H2O)2 (NpC1P2-1). Similar reactions have been explored with U(VI) resulting in the isolation of the U(IV) diphosphonate U[CH2(PO3)2](H2O) (UC1P2-1), and the two U(VI) diphosphonates (UO2)2[CH2(PO3)2](H2O)3.H2O (UC1P2-2) and UO2[CH2(PO3H)2](H2O) (UC1P2-3). Single crystal diffraction studies of NpC1P2-1 reveal that it consists of eight-coordinate Np(IV) bound by diphosphonate anions and two coordinating water molecules to create a polar three-dimensional framework structure wherein the water molecules reside in channels. The structure of UC1P2-1 is similar to that of NpC1P2-1 in that it also adopts a three-dimensional structure. However, the U(IV) centers are seven-coordinate with only a single bound water molecule. UC1P2-2 and UC1P2-3 both contain U(VI). Nevertheless, their structures are quite distinct with UC1P2-2 being composed of corrugated layers containing UO 6 and UO 7 units bridged by C1P2; whereas, UC1P2-3 is found as a polar three-dimensional network structure containing only pentagonal bipyramidal U(VI). Fluorescence measurements on UC1P2-2 and UC1P2-3 exhibit emission from the uranyl moieties with classical vibronic fine-structure.  相似文献   

12.
Optically active disilanes with one chiral silicon center, (R)-1,2-dimethyl-1-(naphth-1-yl)-1,2,2-triphenyldisilane and (R)-1,2,2-trimethyl-2-(4-methoxynaphth-1-yl)-1-(naphth-1-yl)-1-phenyldisilane, were obtained by the reaction of (S)-methyl(naphth-1-yl)phenylchlorosilane (> 99% ee) with methyldiphenylsilyllithium or by the reaction of methyldiphenylchlorosilane with optically active (S)-methyl(naphth-1-yl)phenylsilyllithium and by the reaction of (S)-methyl(naphth-1-yl)phenylchlorosilane (> 99% ee) with dimethyl(4-methoxynaphth-1-yl)silyllithium. Under the optimized conditions, the reactions proceeded with almost complete inversion for the cholorosilanes and retention for the silyl anions. Optically active disilanes with two chiral centers, (1R,2R)-1,2-dimethyl-1,2-di(naphth-1-yl)-1,2-diphenyldisilane and (1S,2S)-1,2-di(4-methoxynaphth-1-yl)-1,2-dimethyl-1,2-diphenyldisilane, were obtained in high optical purity by the reactions of corresponding optically active halogenosilanes (Cl or F) with optically active silyllithiums. The silicon-silicon bond and the silicon-naphthyl bond of (R)-1,1,2-trimethyl-1,2-di(naphth-1-yl)-2-phenyldisilane and (1R,2R)-1,2-dimethyl-1,2-di(naphth-1-yl)-1,2-diphenyldisilane were cleaved without selectivity on bromination. The silicon-(4-methoxynaphth-1-yl) bond of (R)-1,2,2-trimethyl-2-(4-methoxynaphth-1-yl)-1-(naphth-1-yl)-1-phenyldisilane was regiospecifically cleaved, followed by the stereoselective cleavage of the remaining chiral silicon-naphthyl bond (94% inversion). Although the silicon-(4-methoxynaphth-1-yl) bonds of (1S,2S)-1,2-di(4-methoxynaphth-1-yl)-1,2-dimethyl-1,2-diphenyldisilane (> 99% ee) were regioselectively cleaved without silicon-silicon bond scission, remarkable racemization could not be avoided during the one-pot reaction.  相似文献   

13.
The dicopper(I) complex [Cu2(MeL66)]2+ (where MeL66 is the hexadentate ligand 3,5-bis-{bis-[2-(1-methyl-1H-benzimidazol-2-yl)-ethyl]-amino}-meth ylbenzene) reacts reversibly with dioxygen at low temperature to form a mu-peroxo adduct. Kinetic studies of O2 binding carried out in acetone in the temperature range from -80 to -55 degrees C yielded the activation parameters DeltaH1(not equal) = 40.4 +/- 2.2 kJ mol(-1), DeltaS1)(not equal) = -41.4 +/- 10.8 J K(-1) mol(-1) and DeltaH(-1)(not equal) = 72.5 +/- 2.4 kJ mol(-1), DeltaS(-1)(not equal) = 46.7 +/- 11.1 J K(-1) mol(-1) for the forward and reverse reaction, respectively, and the binding parameters of O2 DeltaH degrees = -32.2 +/- 2.2 kJ mol(-1) and DeltaS degrees = -88.1 +/- 10.7 J K(-1) mol(-1). The hydroxylation of a series of p-substituted phenolate salts by [Cu2(MeL66)O2]2+ studied in acetone at -55 degrees C indicates that the reaction occurs with an electrophilic aromatic substitution mechanism, with a Hammett constant rho = -1.84. The temperature dependence of the phenol hydroxylation was studied between -84 and -70 degrees C for a range of sodium p-cyanophenolate concentrations. The rate plots were hyperbolic and enabled to derive the activation parameters for the monophenolase reaction DeltaH(not equal)ox = 29.1 +/- 3.0 kJ mol(-1), DeltaS(not equal)ox = -115 +/- 15 J K(-1) mol(-1), and the binding parameters of the phenolate to the mu-peroxo species DeltaH degrees(b) = -8.1 +/- 1.2 kJ mol(-1) and DeltaS degrees(b) = -8.9 +/- 6.2 J K(-1) mol(-1). Thus, the complete set of kinetic and thermodynamic parameters for the two separate steps of O2 binding and phenol hydroxylation have been obtained for [Cu2(MeL66)]2+.  相似文献   

14.
A structure-activity relationship (SAR) analysis of H(1)-, H(2)- and H(3)-antihistamine activity was carried out and chromatographic data of 2-[2-(phenylamino)thiazol-4-yl]ethanamine, 2-(2-benzyl-4-thiazolyl)ethanamine, 2-(2-benzhydrylthiazol4-yl)ethanamine, 2-(1-piperazinyl- and 2-(hexahydro-1H-1,4-diazepin-1-yl)benzothiazole, 2-(1-piperazinyl)benzothiazole, 2-[4-(1-alkyl)piperidinyl]benzothiazole, 2-(N,N',N'-dimethylalkyl-1,2-ethanediamino)benzothiazole, 2[1-(4-aminopiperidinyl)]benzothiazole, 2-[2-phenyl-4-thiazolyl]ethanamine derivatives and selected H(1)- and H(2)-antihistamine drugs were obtained. NP TLC and RP2 TLC plates (silica gel NP 60F(254) and silica gel RP2 60F(254) silanized precoated), impregnated with a solution of aspartic acid (L-Asp) and a solution of an analogue of aspartic acid (propionic acid), were used in two developing solvents as H(1)-, H(2)- and H(3)-antihistaminic interaction models. The lipophilicity data of the examined compounds were obtained and used in the SAR assay. Biochromatographic tests using TLC plates impregnated with solutions of asparic acid or propionic acid were found to be a source of useful data for the qualitative analysis of compounds with different structures, demonstrating activity to histamine H(1)-, H(2)- and H(3)-receptors. The four presented discriminant models based on biochromatographic studies are an efficient tool in the SAR analysis for initial prediction of compound activity direction within histamine receptors.  相似文献   

15.
Two molecules of indole derivative, e.g. indole-5-carboxylic acid, reacted with one molecule of thiol, e.g. 1,2-ethanedithiol, in the presence of trifluoroacetic acid to yield adducts such as 3-[2-(2-amino-5-carboxyphenyl)-1-(2-mercaptoethylthio)ethyl]-1Hindole-5-carboxylic acid. Parallel formation of dimers, such as 2,3-dihydro-1H,1'H-2,3'-biindole-5,5'-dicarboxylic acid and trimers, such as 3,3'-[2-(2-amino-5-carboxyphenyl) ethane-1,1-diyl]bis(1H-indole-5-carboxylic acid) of the indole derivatives was also observed. Reaction of a mixture of indole and indole-5-carboxylic acid with 2-phenylethanethiol proceeded in a regioselective way, affording 3-[2-(2-aminophenyl)-1-(phenethylthio)ethyl]-1H-indole-5-carboxylic acid. An additional product of this reaction was 3-[2-(2-aminophenyl)-1-(phenethylthio)ethyl]-2,3-dihydro-1H,1'H-2,3'-biindole-5'-carboxylic acid, which upon standing in DMSO-d6 solution gave 3-[2-(2-aminophenyl)-1-(phenethylthio)ethyl]-1H,1'H-2,3'-biindole-5'-carboxylic acid. Structures of all compounds were elucidated by NMR, and a mechanism for their formation was suggested.  相似文献   

16.
Two new, more convenient methods for the synthesis of 1,2,4-triazol-5-ylidenes are described. Four new 1,2,4-triazol-5-ylidenes have been prepared using these methods: 1-(1-adamantyl)-3,4-diphenyl-1,2,4-triazol-5-ylidene (2a), 1-(1-adamantyl)-3-phenyl-4-(p-bromophenyl)-1,2,4-triazol-5-ylidene (2b), 1-(1-adamantyl)-3-phenyl-4-(alpha-naphthyl)-1,2,4-triazol-5-ylidene (2c), and 1-(1-adamantyl)-3,4-di(p-bromophenyl)-1,2,4-triazol-5-ylidene (2d). The X-ray crystal structures of 2d and the precursor salt 1-(1-adamantyl)-3,4-di(p-bromophenyl)-1,2,4-triazolium bromide (1e) are described. Compound 2a reacts with CH(3)CN via C-H insertion to form 1-(1-adamantyl)-3,4-diphenyl-5-cyanomethyl-5H-1,2,4-triazoline (3), and 2a and 2d react with elemental sulfur and elemental selenium, respectively, to form the corresponding thione (4) and selenone (5).  相似文献   

17.
The alkylation of the sodium salt of the malonic acid diester with (R)-1-(2-pyridinyl)ethyl methanesulfonate (2) gave the dimethyl (R)-[1-(2-pyridinyl)ethyl]malonate (3a), stereospecifically. The alkylation reaction of methyl acetoacetate gave the methyl (2'S,2R/2S)-3-oxo-2-[1-(2-pyridinyl)ethyl]butanoate (3d) along with the methyl (S)-3-[1-(2-pyridinyl)ethoxy]-2-butenoate (4d). The acid hydrolysis and decarboxylation of 3d under acidic conditions gave (R)-4-(2-pyridinyl)pentan-2-one (6), and the alkylation of methyl (R)-[1-(2-pyridinyl)ethyl]acetoacetate with benzyl bromide gave a mixture of C-benzylated and O-benzylated products 7 and 8.  相似文献   

18.
Starting from readily available ethyl-4-nitropyrrole-2-carboxylate ( 1 ), substituted 1-methyl-2-(1,3,4-thiadiazol-2-yl)-4-nitropyrroles and 1-methyl-2-(1,3,4-oxadiazol-2-yl)-4-nitropyrroles were prepared. The reaction of 1 with diazomethane gave ethyl 1-methyl-4-nitropyrrole-2-carboxylate ( 2 ). Reaction of compound 2 with hydrazine hydrate afforded the corresponding hydrazide 3 . The reaction of 3 with formic acid yielded 1-(1-methyl-4-nitropyrrole-2-carboxyl)-2-(formyl)hydrazine ( 7 ). Refluxing of the latter with phosphorus pentasulfide in xylene yielded compound 6 in 40% yield. Reaction of compound 7 with phosphorus pentoxide afforded compound 9 . Reaction of compound 3 with 1,1′-carboxyldiimidazole in the presence of triethylamine yielded 2-(1-methyl-4-nitro-2-pyrrolyl)-1,3,4-oxadiazoline-4(H)-5-one ( 11 ). Refluxing compound 3 with cyanogen bromide in methanol gave compound 12 . Compound 13 could be obtained through the reaction of compound 3 with carbon disulfide in basic medium. Alkylation of compound 13 afforded the correspanding alkylthio derivative 14 . Reaction of 1-methyl-4-nitropyrrole-2-carboxylic acid ( 15 ) with thiosemicarbazide and phosphorus oxychloride gave 2-amino-5-(1-methyl-4-nitro-2-pyrrolyl)-1,3,4-thiadiazole ( 16 ). Sandmeyer reaction of compound 16 yielded 2-chloro-5-(1-methyl-4-nitro-2-pyrrolyl)-1,3,4-thiadiazole ( 17 ). Refluxing of the latter with thiourea afforded 2-(1-methyl-4-nitro-2-pyrrolyl)-1,3,4-thiadiazoline-4(H)-5-thione ( 18 ). Alkylation of compound 18 gave the corresponding alkylthio derivative 19 . Oxidation of the latter with hydrogen peroxide in acetic acid yielded 2-(1-methyl-4-nitro-2-pyrrolyl)-5-methylsulfonyl-1,3,4-thiadiazole ( 20 ).  相似文献   

19.
Functionalized o-carboranes are interesting ligands for transition metals. Reaction of LiC2B10H11 with Me2NCH2CH2Cl in toluene afforded 1-Me2NCH2CH2-1,2-C2B10H11 (1). Treatment of 1 with 1 equiv. of n-BuLi gave [(Me2NCH2CH2)C2B10H10]Li ([1]Li), which was a very useful synthon for the production of bisfunctional o-carboranes. Reaction of [1]Li with RCH2CH2Cl afforded 1-Me2NCH2CH2-2-RCH2CH2-1,2-C2B10H10 (R = Me2N (2), MeO (3)). 1 and 2 were also prepared from the reaction of Li2C2B10H10 with excess Me2NCH2CH2Cl. Treatment of [1]Li with excess MeI or allyl bromide gave the ionic salts, [1-Me3NCH2CH2-2-Me-1,2-C2B10H10][I] (4) and [1-Me2N(CH2=CHCH2)CH2CH2-2-(CH2=CHCH2)-1,2-C2B10H10][Br] (6), respectively. Interaction of [1]Li with 1 equiv. of allyl bromide afforded 1-Me2NCH2CH2-2-(CH2=CHCH2)-1,2-C2B10H10 (5). Treatment of [1]Li with excess dimethylfulvene afforded 1-Me2NCH2CH2-2-C5H5CMe2-1,2-C2B10H10 (7). Interaction of [1]Li with excess ethylene oxide afforded an unexpected product 1-HOCH2CH2-2-(CH2=CH)-1,2-C2B10H10 (8). 1 and 3 were conveniently converted into the corresponding deborated compounds, 7-Me2NHCH2CH2-7,8-C2B9H11 (9) and 7-Me2NHCH2CH2-8-MeOCH2CH2-7,8-C2B9H10 (10), respectively, in MeOH-MeOK solution. All of these compounds were characterized by various spectroscopic techniques and elemental analyses. The solid-state structures of 4 and 6-10 were confirmed by single-crystal X-ray analyses.  相似文献   

20.
The reaction of 2,4-diacetyl-5-hydroxy-5-methyl-3-phenylcyclohexanone-1 with phenylhydrazine is conducted, and the crystal structures of its products, 1-(6-hydroxy-3,6-dimethyl)-2,4-diphenyl-4,5,6,7-tetrahydro-2H-indazol-5-yl)ethane-1-one and 1-(2-hydroxy-2-methyl-6-phenyl-4-(2-phenylhydrazono)-5-(1-(2-henylhydrazono)ethyl)cyclohexyl)ethane-1-one, are determined by single crystal XRD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号