首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive, efficient, high throughput, direct injection bioanalytical method based on a single column and high-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS) was developed for pharmacokinetic analysis of early drug discovery compounds in plasma samples. After mixing with a working solution containing an internal standard each plasma sample was directly injected into a polymer-coated mixed-function column for sample cleanup, enrichment and chromatographic separation. The stationary phase incorporates hydrophilic polyoxyethylene groups and hydrophobic groups to the polymer-coated silica. This allows proteins and macromolecules to pass through the column due to restricted access to the surface of the packing while retaining the drug molecules on the bonded hydrophobic phase. The analytes retained in the column with a largely aqueous liquid mobile phase were then chemically separated by switching to a strong organic mobile phase. The column effluent was diverted from waste to the mass spectrometer for analyte detection. Within 200 plasma sample injections the response ratio (analyte vs. internal standard, %CV = 4.6) and the retention times for analyte and internal standard were found consistent and no column deterioration was observed. The recoveries of test compound in various plasma samples were greater than 90%. The total analysis time was 相似文献   

2.
This paper is the first report on the retention behavior of synthetic oligonucleotides and nucleotide oligomers on a continuous-bedmatrix, strong-anion-exchange column. The separation mechanism is predominantly an anion-exchange process, but hydrophobic interaction plays a role as well. The separation is based on the chain length of the oligonucleotide. Both the addition of organic mobile phase modifiers and changes in column temperature affect the retention of oligomers significantly. A volatile buffer system (e.g., triethylamine acetate) could be employed to purify oligonucleotides, and no desalting procedure would be required after the column separation step. The recoveries from the separation are 70% or higher. The maximum loading capacity of an analytical column (35 x 7-mm i.d.) was found to be more than 366 micrograms.  相似文献   

3.
We recently introduced a mixed-mode reversed-phase/weak anion-exchange type separation material based on silica particles which consisted of a hydrophobic alkyl strand with polar embedded groups (thioether and amide functionalities) and a terminal weak anion-exchange-type quinuclidine moiety. This stationary phase was designed to separate molecules by lipophilicity and charge differences and was mainly devised for peptide separations with hydroorganic reversed-phase type elution conditions. Herein, we demonstrate the extraordinary flexibility of this RP/WAX phase, in particular for peptide separations, by illustrating its applicability in various chromatographic modes. The column packed with this material can, depending on the solute character and employed elution conditions, exploit attractive or repulsive electrostatic interactions, and/or hydrophobic or hydrophilic interactions as retention and selectivity increments. As a consequence, the column can be operated in a reversed-phase mode (neutral compounds), anion-exchange mode (acidic compounds), ion-exclusion chromatography mode (cationic solutes), hydrophilic interaction chromatography mode (polar compounds), and hydrophobic interaction chromatography mode (e.g., hydrophobic peptides). Mixed-modes of these chromatographic retention principles may be materialized as well. This allows an exceptionally flexible adjustment of retention and selectivity by tuning experimental conditions. The distinct separation mechanisms will be outlined by selected examples of peptide separations in the different modes.  相似文献   

4.
A new method for the separation of denatured alpha-, beta- and kappa- caseins by hydrophobic interaction chromatography (HIC) is proposed. The method is based on an easy solubilization of commercial and real samples by 4.0 M guanidine thiocyanate (GdmSCN) and elution on a TSK-Gel(R) Phenyl-5PW column (TosoHaas) in the presence of 8.0 M urea in the mobile phase. The procedure, applied to commercial caseins and to real, raw samples (whole milk powder and fat-free yoghurt) is not expensive, it requires common high performance liquid chromatography (HPLC) instrumentation and allows the separation of caseins also in the presence of whey proteins. Quantitative results on the analysis of alpha-, beta- and kappa-caseins in real samples are also reported.  相似文献   

5.
Mixed mode stationary phases with ion-pairing reagent (acidic or basic) as integral part of hydrophobic chain offers unique selectivity, and hence, are ideal for multidimensional separations. The retention of hydrophobic components is a function of organic content, whereas that of charged species is a function of organic content, ionogenic modifier and its level in the mobile phase. Hence, by controlling the parameters influencing component retention (stationary phase and mobile phase), the selectivity of chemical components in the two-dimensional plane can be manipulated to improve the separation. A two-dimensional liquid chromatograph has been developed by coupling similar and dissimilar mixed mode stationary phases in the two dimensions. This technique has immense potential in resolving co-eluting components as the retention mechanism in the two-dimensions are complementary. However, with only part of the primary column eluent sampled into the secondary column, the technique is limited to qualitative analysis.  相似文献   

6.
通过γ-巯丙基三甲氧基硅烷(KH-590)的作用, 将具有抗菌功能的中草药厚朴的主要药用成分厚朴酚键合在硅胶表面上, 制备了厚朴酚键合硅胶液相色谱固定相. 采用红外光谱、元素分析和热重分析对该固定相进行了表征. 以苯同系物、5种吡啶、6种苯胺和8种芳香羧酸类化合物为溶质探针, 初步考察了该新型固定相的基本色谱性能, 研究了其对这些化合物的保留机理. 结果表明, 该固定相的反相色谱性能类似于十八烷基键合硅胶固定相(ODS), 分离原理与疏水性作用有关; 另外, 该固定相包含有别于疏水性作用的氢键作用、π-π电荷转移作用和偶极-偶极等作用, 多种作用力使其在分离某些可电离的碱性和酸性化合物时表现出更好的选择性和分离效果. 厚朴酚配体的多种作用位点对快速分离极性芳香化合物有重要贡献.  相似文献   

7.
This chromatographic study deals with the development of a convenient and versatile method to separate Room Temperature Ionic Liquids. Different modes of chromatography were studied. The study attempts to answer the following question: “what were the most important interactions for the separation of ionic liquids?”. The results show that the essential interactions to assure a good retention of RTILs are the ionic ones and that hydrophobic interactions play a role in the selectivity of the separation. The separation of five imidazolium salt with a traditional diol columns in Hydrophilic Interaction Chromatography (HILIC) was demonstrated. It shows that neutral diol grafted column allows an important retention that we assume is due to the capability of diol to develop a thick layer of water. Furthermore, stationary phase based on mixed interaction associating ion exchange and hydrophobic properties were studied. Firstly, it will be argued that it is possible to separate RTILs with a convenient retention and resolution according to a reverse phase elution with the Primesep columns made of a brush type long alkyl chain with an embedded negatively charged functional group. Secondly, a sucessful separation of RTILs in HILIC mode with a mixed phase column containing a cationic exchanger and a hydrophobic octyl chain length will be demonstrated.  相似文献   

8.
A comparison is made between the use of a silica-based monolithic column and a RP-AmideC16 column for the separation of phenol, thymol and carvacrol using reversed-phase liquid chromatography. The best results concerning total analysis time and sensitivity were obtained using the monolithic column. Detection was optimized using a fluorimetric detector which allowed better detection limits that those obtained with a photo-diode array spectrophotometer. Gradient elution with acetonitrile–water mixtures as mobile phases permitted good separation of the phenols. Identification of the peaks was based on their retention characteristics, varying the flow-rate, nature and composition of the mobile phase as well as the nature of the stationary phase, and using the fluorimetric detector to continuously measure the spectrum when the solute passed through the flow cell. Linearity, precision, recovery and sensitivity were satisfactory. The procedure was applied to the analysis of phenol, thymol and carvacrol in honey of different types. The extraction process was very simple, only involving dissolution of honey with water. Detection limits in the honey samples using the proposed procedure were between 1 and 4 ng g−1.  相似文献   

9.
李新庭  梁鹏  周玉凤  乔晓强 《色谱》2020,38(11):1263-1269
膜脂作为细胞质膜的主要组成部分,在生命活动中扮演着重要的作用,其涉及多种重要疾病的发生和发展过程。发展适用于膜脂分离分析的新型色谱材料对于其后续结构和生物学功能研究具有重要的意义。该文选用具有潜在生物相容性的离子液体溴化1-乙烯基-3-十二烷基咪唑(1-vinyl-3-dodecylimidazole bromide,VDI)为功能单体,通过一步法点击反应将其接枝到巯基功能化硅球表面,制备得到了新型溴化1-乙烯基-3-十二烷基咪唑硅胶键合固定相(Sil-VDI)。利用傅里叶变换红外光谱仪和热重分析仪对Sil-VDI固定相材料的结构进行表征,结果证明Sil-VDI色谱固定相已被成功制备。保留机制研究显示填充Sil-VDI色谱柱具有典型的反相/离子交换混合模式保留特性。基于此,采用不同疏水性物质烷基苯、多环芳烃、苯胺、苯衍生物和无机阴离子BrO3 - 、NO3 - 和IO3 - 为测试物,对所制备固定相的色谱性能进行了研究。结果表明,该固定相对4类疏水性物质和无机阴离子均有较好的分离选择性和良好的峰对称性。进一步研究了所制备的Sil-VDI色谱柱对鸡蛋黄磷脂和肺腺癌细胞提取膜脂的分离效果,结果显示Sil-VDI色谱柱对2种磷脂样品均显示出了良好的分离能力。该文所制备的Sil-VDI色谱固定相合成方法简便,具有良好的分离分析应用潜能,后续工作会进一步研究该固定相在生物样品中的分离分析性能。  相似文献   

10.
A novel dual‐retention mechanism mixed‐mode stationary phase based on silica gel functionalized with PEG 400 and succinic anhydride as the ligand was prepared and characterized by infrared spectra and elemental analysis. Because of the ligand containing PEG 400 and carboxyl function groups, it displayed hydrophobic interaction chromatography (HIC) characteristic in a high‐salt‐concentration mobile phase, and weak cation exchange chromatography (WCX) characteristic in a low‐salt‐concentration mobile phase. As a result, it can be employed to separate proteins with both WCX and HIC modes. The resolution and selectivity of the stationary phase was evaluated under both HIC and WCX modes with protein standards, and its performance was comparable to that of conventional ion‐exchange chromatography and HIC columns. The results indicated that the novel dual‐retention mechanism column, in many cases, could replace two individual WCX and HIC columns as a ‘2D column’. In addition, the mixed retention mechanism of proteins on this ‘2D column’ was investigated with stoichiometric displacement theory for retention of solute in liquid chromatography in detail in order to understand why the dual‐retention mechanism column has high resolution and selectivity for protein separation under WCX and HIC modes, respectively. Based on this ‘2D column’, a new 2DLC technology with a single column was developed. It is very important in proteome research and recombinant protein drug production to save column expense and simplify the processes in biotechnology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
建立了整体柱离子对色谱-紫外检测法梯度淋洗快速分离测定4种吡啶离子液体阳离子的方法。分离采用C18反相硅胶整体柱,以离子对试剂(用柠檬酸调节pH值)-乙腈为淋洗液,并采用多级梯度洗脱程序。实验考察了色谱柱、离子对试剂、乙腈浓度、色谱柱温度及流速对吡啶阳离子保留的影响,并讨论了其保留规律。咪唑阳离子的保留符合碳数规律。最佳色谱条件是:在流速3.0 mL/min,柱温30℃下,以1.0 mmol/L庚烷磺酸钠(pH 4.0)(A)+乙腈(B)为淋洗液进行梯度洗脱。淋洗梯度为0~2.0 min,10%B;2.0~2.5 min,10%~15%B;2.5~4.0 min,15%B;4.0~4.5 min,15%~20%B;4.5~10.0 min,20%B。在此条件下,4种吡啶阳离子可在7 min内基线分离。所测阳离子的检出限(S/N=3)为0.05~0.17 mg/L;峰面积的相对标准偏差(n=5)小于0.6%。将本方法用于实验室合成的离子液体样品和污水样品的分析,加标回收率在95.7%~99.0%之间。本方法准确、快速,具有较好的实用性。  相似文献   

12.
A mathematical model was developed which describes the behavior of various liquid systems in a rotating coil column used for liquid countercurrent chromatography. The conditions of retaining the liquid stationary phase were described in detail for hydrophobic (rapidly settling) systems. Various forces that act on liquids in the column were considered. An equation was derived for the steady-state retention process. Mathematical expressions were obtained, which make it possible to estimate the stationary-phase volume retained in a column with consideration for the physicochemical properties of the liquid system in use, the rate of column rotation, and the main design parameters of the planet centrifuge. This volume directly affects the column capacity and separation efficiency and it is crucial for choosing liquid systems and experimental conditions.  相似文献   

13.
Two‐dimensional liquid chromatography largely increases the number of separated compounds in a single run, theoretically up to the product of the peaks separated in each dimension on the columns with different selectivities. On‐line coupling of a reversed‐phase column with an aqueous normal‐phase (hydrophilic interaction liquid chromatography) column yields orthogonal systems with high peak capacities. Fast on‐line two‐dimensional liquid chromatography needs a capillary or micro‐bore column providing low‐volume effluent fractions transferred to a short efficient second‐dimension column for separation at a high mobile phase flow rate. We prepared polymethacrylate zwitterionic monolithic micro‐columns in fused silica capillaries with structurally different dimethacrylate cross‐linkers. The columns provide dual retention mechanism (hydrophilic interaction and reversed‐phase). Setting the mobile phase composition allows adjusting the separation selectivity for various polar substance classes. Coupling on‐line an organic polymer monolithic capillary column in the first dimension with a short silica‐based monolithic column in the second dimension provides two‐dimensional liquid chromatography systems with high peak capacities. The silica monolithic C18 columns provide higher separation efficiency than the particle‐packed columns at the flow rates as high as 5 mL/min used in the second dimension. Decreasing the diameter of the silica monolithic columns allows using a higher flow rate at the maximum operation pressure and lower fraction volumes transferred from the first, hydrophilic interaction dimension, into the second, reversed‐phase mode, avoiding the mobile phase compatibility issues, improving the resolution, increasing the peak capacity, and the peak production rate.  相似文献   

14.
A high-resolution analysis of polyprenol mixtures was achieved by supercritical fluid chromatography (SFC). The separation of polyprenols was examined on an octadecylsilane-packed column with liquid carbon dioxide as the mobile phase and ethanol as modifier. Using this chromatography system, the resolution of separation (Rs) between octadecaprenol (prenol 18) and nonadecaprenol (prenol 19) was two times higher than that using conventional reversed-phase high-performance liquid chromatography. Our SFC technique allows the advantage of baseline separation of polyprenol samples containing hydrophobic components such as terpenes or fatty acids that are unfavorable for good separation. This method is very useful for the analysis of structurally close polyprenol analogues of rubber plant metabolites.  相似文献   

15.
正A new ionic liquid-based high-performance liquid chromatography stationary phase is reported.A derivative of N-methyl pyrrolidinium tetrafluoroborate was covalently immobilized on the surface of silica particles to prepare silica-based N-methyl pyrrolidinium tetrafluoroborate(SilprMP BF4)stationary phase.The obtained ionic liquid-modified silica was evaluated and confirmed by elemental analysis,infrared spectroscopy,and thermogravimetric analysis.A column was packed with the modified particles.The retention behavior of aromatic compounds,alkyl benzenes,and acidic and basic compounds on the SilprMP BF4 stationary phase was studied under reversed-phase liquid chromatography conditions.The effect of the eluent pH on the separation of the acidic and basic compounds was also studied.The new stationary phase involves multiple retention mechanisms,such as electrostatic,hydrophobic,ion-dipole,and anion-exchange interactions,which might lead to multipurpose separation media.  相似文献   

16.
Jiang M  Qin F  Xiong Z  Zhang S  Pan L  Li F 《色谱》2011,29(11):1137-1140
以纤维素三-(3,5-二甲基苯基氨基甲酸酯)为手性固定相(Lux Cellulose-1),建立了在正相色谱条件下直接分离盐酸川丁特罗对映体的高效液相色谱法。考察了乙醇、异丙醇等有机改性剂,三氟乙酸、二乙胺等流动相添加剂和柱温对对映体分离的影响。结果显示,酸性和碱性添加剂对对映体分离的影响最为显著: 添加二乙胺时两对映体无分离趋势;添加三氟乙酸时对映体保留强,且分离趋势明显;而同时添加三氟乙酸和二乙胺则两对映体分离显著改善,分离度可达4.0。优化后的色谱条件: 色谱柱为Lux Cellulose-1手性柱(250 mm×4.6 mm, 5 μm),流动相为正庚烷-乙醇-三氟乙酸-二乙胺(88:12:0.3:0.05, v/v/v/v),流速为1.0 mL/min,紫外检测波长为246 nm,柱温为25 ℃。该方法简便,快速,可用于左旋盐酸川丁特罗原料中右旋异构体杂质的检查。  相似文献   

17.
A procedure is described for the determination of the short-term and long-term repeatabilities and of the column-to-column and lot-to-lot reproducibilities of the retention and profile characteristics of the peaks obtained with a number of different reversed-phase liquid chromatography (RPLC) C18-bonded silica columns of several commercial brands. Data characterizing the retention, the steric selectivity, the hydrogen bonding capacity, the hydrophobic interaction selectivity, the column efficiency and the peak asymmetry will be acquired for all the probe compounds. These include 30 neutral, acidic and basic compounds distributed into five groups to be eluted under as many different sets of chromatographic conditions. The data will be obtained using an HP 1100 liquid chromatograph. The compounds and experimental conditions selected were similar to those previously used by different authors for comparison purposes. Careful attention will be paid to minimization of external error contributions by adhering to a strict operational procedure. The precision expected will be high because preliminary results gave standard deviations of around 0.04% for the separation factors, below 0.15% for the retention times and around 1% for the column efficiency in short-term repeatability experiments performed with one column.  相似文献   

18.
A new water‐soluble tetra‐proline‐modified calix[4]arene‐bonded silica stationary phase was prepared straightforwardly by an indirect method and characterized by elemental analysis, energy dispersive Spectrometry, solid‐state 13C NMR spectroscopy, Fourier‐transform infrared spectroscopy, and thermogravimetric analysis. Due to the simultaneous introduction of polar tetra‐proline and nonpolar calix[4]arene, the developed column possessing a double retention mode of reverse‐phase liquid chromatography and hydrophilic interaction liquid chromatography. A series of hydrophobic and hydrophilic test samples, including nucleosides and nucleotides, amines, monosubstituted benzenes, chiral compounds, and phenols, were used to evaluate the developed stationary phase. A rapid separation capability, high separation efficiency, and selectivity were achieved based on the multiple interactions between solutes and tetra‐proline‐modified calix[4]arene‐bonded silica stationary phase. Moreover, the developed stationary phase was further used to detect and separate hexamethylenetetramine in rice flour. All the results indicated the potential merits of the developed stationary phase for simultaneous separation of complex hydrophobic and hydrophilic samples with high selectivity.  相似文献   

19.
The use of capillary column gas chromatography for drug screening in forensic toxicology has become increasingly widespread. Screening procedures however are often lengthy and unsuitable for rapid confirmatory or quantitative applications. In order to develop a practical scheme for confirmatory/quantitative analysis, we have optimized a series of temperature profiles to allow the rapid quantitative determination of a wide range of acid/neutral and basic drugs in extracts from post mortem fluids and tissue. The appropriate profile is selected based on the retention index on a standard crosslinked methyl silicone column used to screen extracts. The use of a 5% phenyl methyl silicone phase allows complementary identification, and allows the separation of some pairs of compounds with identical retention indices in the screning procedure.  相似文献   

20.
The separation of dansyl derivatives of N1- and N8-acetylspermidine by reversed-phase column liquid chromatography is reported. The influence of organic solvents on the retention of acetylspermidines was studied. Best resolutions were achieved using a C18 column and a ternary mobile phase composed of water, methanol and acetonitrile. The precolumn derivatization method permitted the detection of picomole quantities. A method for the determination of acetylspermidines in rat tissues is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号