首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two mononuclear RuII complexes of polypyridyl ligands, cis-[Ru(bpy)2(4,4′-bpy)Cl](PF6)·H2O (1) and cis-[Ru(phen)2(CH3CN)2](PF6)2 (2) (bpy=2,2′-bipyridyl, 4,4′-bpy=4,4′-bipyridyl, and PHEN=1,10-phenanthroline), have been synthesized and characterized by elemental analyses, IR and UV–vis spectra. The crystal structures of both complexes have been determined by X-ray diffraction, indicating that each RuII center is hexa-coordinated (RuN5Cl for 1 and RuN6 for 2) and takes a distorted octahedral geometry. The favored feature of both complexes is that they are quite useful complex precursors for further constructing new functional architectures.  相似文献   

2.
A series of novel heterobimetallic crown ether-like polyoxadiphosphaplatinaferrocenophanes cis-[1,1′-Fc(CH2O(CH2CH2O)nCH2CH2PPh2)2]PtCl2 (n=1–3) (4a–c) was synthesized in good yield by cyclization of the bis(phosphine) ligands 1,1′-Fc(CH2O(CH2CH2O)nCH2CH2PPh2)2 (n=1–3) (3a–c) and (PhCN)2PtCl2 under high dilution conditions in CH2Cl2. The bisphosphines 3a–c are obtained by reaction of the corresponding diols 1,1′-Fc(CH2O(CH2CH2O)nCH2CH2OH)2 (n=1–3) (1a–c) with: (i) CH3SO2Cl in CH2Cl2 and (ii) LiPPh2 in THF. Although the X-ray crystal structure of 4a shows that the cavity is large enough for the encapsulation of small metal cations, inclusion experiments of 4a–c with Group 1 cations, and Mg2+, or NH4+ in solution applying NMR titration and cyclovoltammetric methods reveal no evidence for the formation of host–guest complexes for 4a,b. In the case of 4c only the addition of Na+ or K+ leads to an insignificant effect.  相似文献   

3.
The complexes Zn(bipy)Cl2 and Zn(bipy)2Cl2 as well as 2,2′-bipyridyl in aqueous solution (D2O) have been examined by the NMR method. The presence of the monocationic bipy D+ form in aqueous bipyridyl solution has been found. The changes of chemical shifts of bipyridyl protons for complexes Zn(bipy)3Cl2 and Zn(bipy)Cl2 have confirmed explicitly the essential influence of diamagnetic currents on the NMR spectrum of Zn(bipy)3Cl2. The comparison of the spectra of 2,2′-bipyridyl (in CH3OH) and of Zn(bipy)Cl2 may also suggest the presence of the nonbonding metal-proton 6 interaction.  相似文献   

4.
Treatment of ruthenium complexes [CpRu(AN)3][PF6] (1a) (AN=acetonitrile) with iron complexes CpFe(CO)2X (2a–2c) (X=Cl, Br, I) and CpFe(CO)L′X (6a–6g) (L′=PMe3, PMe2Ph, PMePh2, PPh3, P(OPh)3; X=Cl, Br, I) in refluxing CH2Cl2 for 3 h results in a triple ligand transfer reaction from iron to ruthenium to give stable ruthenium complexes CpRu(CO)2X (3a–3c) (X=Cl, Br, I) and CpRu(CO)L′X (7a–7g) (L′=PMe3, PMe2Ph, PMePh2, PPh3, P(OPh)3; X=Br, I), respectively. Similar reaction of [CpRu(L)(AN)2][PF6] (1b: L=CO, 1c: P(OMe)3) causes double ligand transfer to yield complexes 3a–3c and 7a–7h. Halide on iron, CO on iron or ruthenium, and two acetonitrile ligands on ruthenium are essential for the present ligand transfer reaction. The dinuclear ruthenium complex 11a [CpRu(CO)(μ-I)]2 was isolated from the reaction of 1a with 6a at 0°C. Complex 11a slowly decomposes in CH2Cl2 at room temperature to give 3a, and transforms into 7a by the reaction with PMe3.  相似文献   

5.
Two carbon-rich starburst gold(I) acetylide complexes [TEE][Au(PCy3)]4 (3, [TEE]H4=tetraethynylethene) and [TEB][Au(PCy3)]3 (6, [TEB]H3=1,3,5-triethynylbenzene) were prepared and their UV–vis absorption, emission and excitation spectra have been recorded. In fluid CH2Cl2 solutions, 3 exhibits prompt 1(ππ*) fluorescence with λ0–0 and λmax at 413 and 428 nm, respectively, while 6 displays 3(ππ*) phosphorescence with λ0–0 and λmax at 446 and 479 nm, respectively. The crystal structure of 3·CH2Cl2 has been determined.  相似文献   

6.
Six new cluster derivatives [Rh2Co2(CO)6(μ-CO)442-HCCR)] (R=FeCp2 1, CH2OH 2, (CH3O)C10H6CH(CH3)COOCH2CCH 3) and [RhCo3(CO)6(μ-CO)442-HCCR)] (R=FeCp2 4, CH2OH 5, (CH3O)C10H6CH(CH3)COOCH2CCH 6) were obtained by the reactions of [Rh2Co2(CO)12] and [RhCo3(CO)12] with substituted 1-alkyne ligands HCCR [R=FeCp2 7, CH2OH 8, (CH3O)C10H6CH(CH3) COOCH2CCH 9] in n-hexane at room temperature, respectively. Alkynes insert into the Co---Co bond of the tetranuclear clusters to give butterfly clusters. [Rh2Co2(CO)6(μ-CO)442-HCCFeCp2)] (1) was characterized by a single-crystal X-ray diffraction analysis. Reactions of 1, 2 with 7, 8 and ambient pressure of carbon monoxide at 25 °C gave two known cluster complexes [Co2(CO)62, η2-HCCR)] (R=FeCp2 10, CH2OH 11), respectively. All clusters were characterized by element analysis, IR and 1H-NMR spectroscopy.  相似文献   

7.
A series of pentacarbonyl complexes of chromium and molybdenum with unicoordinated-diphosphines, M(CO)51-P-P) (P-P = dppe, dppp, dppb) has been prepared by amine oxide-induced phosphine substitution of the binary carbonyls. The basicity of the pendant phosphine groups was demonstrated by their ready conversion to the diphosphine-bridged heterobimetallic complexes (OC)5M(μ-P-P)M′(CO)5 (M, M′= Cr, Mo, W; M ≠ M′) in the presence of MCO)5(CH3CN). The complexes were characterized by IR and NMR (1H and 31P-{1H}) spectroscopy.  相似文献   

8.
Sn(CH3)2Cl2 exerts its antitumor activity in a specific way. Unlike anticancer cis-Pt(NH3)2Cl2 drug which binds strongly to the nitrogen atoms of DNA bases, Sn(CH3)2Cl2 shows no major affinity towards base binding. Thus, the mechanism of action by which tinorganometallic compounds exert antitumor activity would be different from that of the cisplatin drug. The aim of this study was to examine the binding of Sn(CH3)2Cl2 with calf thymus DNA and yeast RNA in aqueous solutions at pH 7.1–6.6 with constant concentrations of DNA and RNA and various molar ratios of Sn(CH3)2Cl2/DNA (phosphate) and Sn(CH3)2Cl2/RNA of 1/40, 1/20, 1/10, 1/5. Fourier transform infrared (FTIR) and UV–visible difference spectroscopic methods were used to determine the Sn(CH3)2Cl2 binding mode, binding constant, sequence selectivity and structural variations of Sn(CH3)2Cl2/DNA and Sn(CH3)2Cl2/RNA complexes in aqueous solution. Sn(CH3)2Cl2 hydrolyzes in water to give Sn(CH3)2(OH)2 and [Sn(CH3)2(OH)(H2O)n]+ species. Spectroscopic evidence showed that interaction occurred mainly through (CH3)2Sn(IV) hydroxide and polynucleotide backbone phosphate group with overall binding constant of K(Sn(CH3)2Cl2–DNA)=1.47×105 M−1 and K(Sn(CH3)2Cl2–RNA)=7.33×105 M−1. Sn(CH3)2Cl2 induced no biopolymer conformational changes with DNA remaining in the B-family structure and RNA in A-conformation upon drug complexation.  相似文献   

9.
The reaction of Cp(dppe)FeI with the ligands 2,2′- and 4,4′-dithiobispyridine (S2(Py)2) give the mononuclear or binuclear complexes of the type [Cp(dppe)Fe-S2(Py)2]PF6, [Cp(dppe)Fe---SPy]PF6 or [{Cp(dppe)Fe}2-μ-SPy](PF6)2 depending on the reaction condition. Reaction of Cp(dppe)FeI with dithiobispyridines in presence of TlPF6 as halide abstractor and using CH2Cl2 as a solvent gives the complexes [Cp(dppe)Fe-4,4′-S2(Py)2)2]PF6 (1) and [CpFe(dppe)-2,2′-S2(Py)2]PF6 (2) whereas the same reaction using CH3OH as a solvent and NH4PF6 as the halide abstractor leads to the formation of the FeIII–thiolate complex [Cp(dppe)Fe-2,2′-SPy]PF6 (3) and the mixed-valence complex [Cp(dppe)FeIII-μSPy-FeII(dppe)Cp](PF6)2 (4). Magnetic and ESR measurements are in agreement with one unpaired electron delocalized between them. Mössbauer data indicate clearly the presence of two different iron sites, each one of the N-bonded and S-bonded iron atoms, with intermediate oxidation state FeII---FeIII. An electron transfer intervalence absorption was observed for this complex at 780 nm (in CH2Cl2). By applying the Hush theory the intervalence parameters were obtained; =0.028, Hab=361 cm−1 which indicate Class II Robin–Day. Estimation of the rate electron transfer affords a value kth=6.5×106 s−1. Solvent effect on the intervalence transition follow the Hush prediction for high dielectric constants solvents which permit the evaluation of the outer and inner-sphere reorganizational parameters, which were analyzed and discussed. The electronic interaction parameters compare well with those found for electron transfer in metalloproteins.  相似文献   

10.
Reactions of FcCCH (a), HCCCCFc (b) and FcCCCCFc (c) with Ru3(CO)10(NCMe)2 (all) and Ru3(μ-dppm)(CO)10 (b and c only) are described. Among the products, the complexes Ru33-RC2R′)(μ-CO)(CO)9 (R=H, R′=Fc 1, CCFc 2; R=R′=Fc 5), Ru3(μ-H)(μ3-C2CCFc)(μ-dppm)(CO)7 3, Ru33-FcC2CCFc)(μ-dppm)(μ-CO)(CO)7 6 and Ru33-C4Fc2(CCFc)2}(μ-dppm)(μ-CO)(CO)5 7 were characterised, including single-crystal structure determinations for 1, 3, 5 and 7; that of 7 did not differ significantly from an earlier study of a mixed CH2Cl2–C6H6 solvate.  相似文献   

11.
Two novel hydrogen maleato (HL) bridged Cu(II) complexes 1[Cu(phen)Cl(HL)2/2] 1 and 1[Cu(phen)(NO3)(HL)2/2] 2 were obtained from reactions of 1,10-phenanthroline, maleic acid with CuCl2·2H2O and Cu(NO3)2·3H2O, respectively, in CH3OH/H2O (1:1 v/v) at pH=2.0 and the crystal structures were determined by single crystal X-ray diffraction methods. Both complexes crystallize isostructurally in the monoclinic space group P21/n with cell dimensions: 1 a=8.639(2) Å, b=15.614(3) Å, c=11.326(2) Å, β=94.67(3)°, Z=4, Dcalc=1.720 g/cm3 and 2 a=8.544(1) Å, b=15.517(2) Å, c=12.160(1) Å, β=90.84(8)°, Z=4, Dcalc=1.734 g/cm3. In both complexes, the square pyramidally coordinated Cu atoms are bridged by hydrogen maleato ligands into 1D chains with the coordinating phen ligands parallel on one side. Interdigitation of the chelating phen ligands of two neighbouring chains via π–π stacking interactions forms supramolecular double chains, which are then arranged in the crystal structures according to pseudo 1D close packing patterns. Both complexes exhibit similar paramagnetic behavior obeying Curie–Weiss laws χm(T−θ)=0.414 cm3 mol−1 K with the Weiss constants θ=−1.45, −1.0 K for 1 and 2, respectively.  相似文献   

12.
Addition of 1,4-dithiols to dichloromethane solutions of [PtCl2(P-P)] (P-P = (PPh3)2, Ph2P(CH2)3PPh2, Phd2P(CH2)4PPh2; 1,4-dithiols = HS(CH2)4SH, (−)DIOSH2 (2,3-O-isopropylidene-1,4-dithiol-l-threitol), BINASH2 (1,1′-dinaphthalene-2,2′-dithiol)) in the presence of NEt3 yielded the mononuclear complexes [Pt(1,4-dithiolato)(P-P)]. Related palladium(II) complexes [Pd(dithiolato)(P-P)] (P-P=Ph2P(CH2)3PPh2, Ph2P(CH2)4PPh2; dithiolato = S(CH2)4S, (−)-DIOS) were prepared by the same method. The structure of [Pt((−)DIOS)(PPh3)2] and [Pd(S(CH2)4S)(Ph2P(CH2)3PPh2)] complexes was determined by X-ray diffraction methods. Pt—dithiolato—SnC12 systems are active in the hydroformylation of styrene. At 100 atm and 125°C [Pt(dithiolate)(P-P)]/SnCl2 (Pt:Sn = 20) systems provided aldehyde conversion up to 80%.  相似文献   

13.
Some new complexes of the type Ir1chel(CH2=CH2)2Cl (chel = bipy; 4,4′-Me2bipy; 4,4′-Ph2bipy; phen; 5,6-Me2phen; 4,7-Ph2phen; 3,4,7,8-Me4phen) behave as catalyst precursors for the hydrogen transfer from alcohols to ketones and Schiff bases. The most active of the complexes is the 3,4,7,8-Me4phen derivative, which, at 83°C, gave turnovers of up to 2850 cycles/min with cyclohexanone, 2700 cycles/min with 4-tert-butylcyclohexanone and 5000 cycles/min with benzylidenaniline, at a catalyst concentration of 4 X 10−5 M and a KOH (cocatalyst) concentration of 8 X 10−4 M. Good catalytic activity was observed also at room temperature. Some catalytic activity was found at low substrate concentrations, even in the absence of KOH. The maximum stereoselectivity reached in the reduction of 4-tertbutylcyclohexanone was 97%, the trans-alcohol being formed.  相似文献   

14.
A new complex [Cu (C4H7N3) H2O (4,4′-Hbpy)]·SO4·NO3 was synthesized and X-ray characterized. Elemental analysis, X-ray diffraction and infrared spectroscopy of the complex were performed. The crystal system is orthorhombic. Crystal data: Fw=498.98, spacegroup: P212121. Z=4, a=14.952(3), b=20.491(4), c=6.713 Å. V=2056.7(9) Å. λ(Mo-K)=0.71070 Å. μ=12.18 cm−1, Dcalc=1.66 g/cm3, F000=1032.00, R=0.062, Rw=0.087. X-ray analysis illustrated that 4,4′-bpy is mono-protonated and that there are two kinds of anions in one molecule, which give rise to the hydrogen interaction between the molecules in the crystal. Then an extended three-dimensional network is formed along the hydrogen bonds and π–π bonds between the pyridine rings.  相似文献   

15.
The photophysics of three complexes of the form Ru(bpy)3−(pypm)2+ (where bpy2,2′-bipyridine, pypm 2-(2′-pyridyl)pyrimidine and P=1, 2 or 3) was examined in H2O, propylene carbonate, CH3CN and 4:1 (v/v) C2H5OH---CH3OH; comparison was made with the well-known photophysical behavior of Ru(bpy)32+. The lifetimes of the luminescent metal-to-ligand charge transfer (MLCT) excited states were determined as a function of temperature (between −103 and 90 °C, depending on the solvent), from which were extracted the rate constants for radiative and non-radiative decay and ΔE, the energy gap between the MLCT and metal-centered (MC) excited states. The results indicate that *Ru(bpy)2(pypm)2+ decays via a higher lying MLCT state, whereas *Ru(pypm)32+ and *Ru(pypm)2(bpy)2+ decay predominantly via the MC state.  相似文献   

16.
以二苯基-1-甲基咪唑膦(dpim)为配体制备了一种新型的配合物催化剂Ni(dpim)2Cl2. 循环伏安研究表明,Ni(dpim)2Cl2配合物在氮气气氛下表现出两步还原的电化学行为,在-0.7 V下为两电子的不可逆还原,在-1.3 V下为单电子准可逆还原. 向电解液中通入CO2后,在-1.3 V下的还原峰变得不可逆,且其峰电流从0.48 mA·cm-2增大到0.55 mA·cm-2. 在质子源(CH3OH)存在的条件下,该还原峰电流可继续增大到0.72 mA·cm-2. 该研究结果表明,Ni(dpim)2Cl2配合物对CO2还原具有良好的电催化性能,且其电催化还原过程符合ECE机理. 在-1.3 V下恒电位电解得到的还原产物主要为CO,催化转换频率(Turnover of Frenquency, TOF)为0.17 s-1.  相似文献   

17.
The catalytic activity of two manganese(III)-oxazoline complexes [Mn(phox)2(CH3OH)2]ClO4 and Mn(phox)3 (Hphox = 2-(2′-hydroxylphenyl)oxazoline), was studied in the epoxidation of various olefins. All of epoxidation reactions were carried out in (1:1) mixture of methanol:dichloromethane at room temperature using urea hydrogen peroxide (UHP) as oxidant and imidazole as co-catalyst. The epoxide yields clearly demonstrate the influence of steric and electronic properties of olefins, the catalysts and nitrogenous bases as axial ligand. [Mn(phox)2(CH3OH)2]ClO4 catalyst with low steric properties has higher catalytic activity than Mn(phox)3. The highest epoxide yield (95%) was achieved for indene at the presence of [Mn(phox)2(CH3OH)2]ClO4 within 5 min. The proximal and distal interactions of strong π-donor axial ligands such as imidazole with the active intermediate are efficiently increased activity of the catalytic system.  相似文献   

18.
The reaction of Ln(NO3)3·6H2O (Ln=La, Ce, Pr or Nd) with a sixfold excess of Ph3PO in acetone formed [Ln(Ph3PO)4(NO3)3]·Me2CO. The crystal structure of the La complex shows a nine-coordinate metal centre with four phosphine oxides, two bidentate and one monodentate nitrate groups, and PXRD studies show the same structure is present in the other three complexes. In CH2Cl2 or Me2CO solutions, 31P NMR studies show that the complexes are essentially completely decomposed into [Ln(Ph3PO)3(NO3)3] and Ph3PO. Similar reactions in ethanol gave [Ln(Ph3PO)3(NO3)3] only. In contrast for Ln=Sm, Eu or Gd, only the [Ln(Ph3PO)3(NO3)3] are formed from either acetone or ethanol solutions. For the later lanthanides Ln=Tb–Lu, acetone solutions of Ln(NO3)3·6H2O and Ph3PO gave [Ln(Ph3PO)3(NO3)3] only, even with a large excess of Ph3PO, but from cold ethanol [Ln(Ph3PO)4(NO3)2]NO3 (Ln=Tb, Ho–Lu) were obtained. The structure of [Lu(Ph3PO)4(NO3)2]NO3 shows an eight-coordinate metal centre with four phosphine oxides and two bidentate nitrate groups. In solution in CH2Cl2 or Me2CO the tetrakis-complexes show varying amounts of decomposition into mixtures of [Ln(Ph3PO)3(NO3)3], [Ln(Ph3PO)4(NO3)2]NO3 and Ph3PO as judged by 31P{1H} NMR spectroscopy. The [Ln(Ph3PO)3(NO3)3] also partially decompose in solution for Ln=Dy–Lu, forming some tetrakis(phosphine oxide) species.  相似文献   

19.
The reaction of Ru(CO)4(C2H4) or Ru(CO)5 with 1,5-Ph4P2N4S2 in CH2Cl2/hexane at 23°C produces the dimer [Ru(CO)2(Ph4 P2N4S2)]2 (2), which was shown by X-ray crystallography to have a centrosymmetric structure in which the P2N4S2 ring is attached to one ruthenium atom through two (geminal) nitrogen atoms and the remote sulfur atom and serves as a bridge to the other ruthenium atom via the second sulfur atom. Crystals of 2 ·2(CH2Cl2) are triclinic, space group P (No. 2), a = 12.901(1) Å, b = 13.072(1) Å, c = 10.123(1) Å, = 100.88(1)°, β = 98.90(1)°, γ = 67.50(1)°, V = 1542.4(3) Å, Z = 1 with final R and Rw values of 0.040 and 0.027, respectively.  相似文献   

20.
A series of heterodimetallic complexes of general formula (C5R5)M(μ-CO)3RuC5Me5 (M = Cr, Mo, W; R = Me, Et) has been prepared in good yields by the reaction of [C5R5M(CO)3] with [C5Me5Ru(CH3CN)3]+. (C5Me4Et)W(μ-CO)3Ru(C5Me5) was characterized by a crystal structure determination. The W---Ru bond length of 2.41 Å is consistent with the formulation of a metal-metal triple bond, while the unsymmetrical bonding mode of the three bridging carbonyl groups reflects the inherent non-equivalence of the two different C5R5M-units. Using [CpRu(CH3CN)3]+ or [CpRu(CO)2(CH3CN)]+ as the cationic precursor leads to the formation of dimetallic species (C5R5)M(CO)5RuC5H5 with both bridging and terminal carbonyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号