首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The circular chromatic number of a graph is a well‐studied refinement of the chromatic number. Circular‐perfect graphs form a superclass of perfect graphs defined by means of this more general coloring concept. This article studies claw‐free circular‐perfect graphs. First, we prove that if G is a connected claw‐free circular‐perfect graph with χ(G)>ω(G), then min{α(G), ω(G)}=2. We use this result to design a polynomial time algorithm that computes the circular chromatic number of claw‐free circular‐perfect graphs. A consequence of the strong perfect graph theorem is that minimal imperfect graphs G have min{α(G), ω(G)}=2. In contrast to this result, it is shown in Z. Pan and X. Zhu [European J Combin 29(4) (2008), 1055–1063] that minimal circular‐imperfect graphs G can have arbitrarily large independence number and arbitrarily large clique number. In this article, we prove that claw‐free minimal circular‐imperfect graphs G have min{α(G), ω(G)}≤3. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 163–172, 2010  相似文献   

2.
A graph G is 1‐Hamilton‐connected if is Hamilton‐connected for every vertex . In the article, we introduce a closure concept for 1‐Hamilton‐connectedness in claw‐free graphs. If is a (new) closure of a claw‐free graph G, then is 1‐Hamilton‐connected if and only if G is 1‐Hamilton‐connected, is the line graph of a multigraph, and for some , is the line graph of a multigraph with at most two triangles or at most one double edge. As applications, we prove that Thomassen's Conjecture (every 4‐connected line graph is hamiltonian) is equivalent to the statement that every 4‐connected claw‐free graph is 1‐Hamilton‐connected, and we present results showing that every 5‐connected claw‐free graph with minimum degree at least 6 is 1‐Hamilton‐connected and that every 4‐connected claw‐free and hourglass‐free graph is 1‐Hamilton‐connected.  相似文献   

3.
We study the degree‐diameter problem for claw‐free graphs and 2‐regular hypergraphs. Let be the largest order of a claw‐free graph of maximum degree Δ and diameter D. We show that , where , for any D and any even . So for claw‐free graphs, the well‐known Moore bound can be strengthened considerably. We further show that for with (mod 4). We also give an upper bound on the order of ‐free graphs of given maximum degree and diameter for . We prove similar results for the hypergraph version of the degree‐diameter problem. The hypergraph Moore bound states that the order of a hypergraph of maximum degree Δ, rank k, and diameter D is at most . For 2‐regular hypergraph of rank and any diameter D, we improve this bound to , where . Our construction of claw‐free graphs of diameter 2 yields a similar result for hypergraphs of diameter 2, degree 2, and any even rank .  相似文献   

4.
A clique covering of a simple graph G is a collection of cliques of G covering all the edges of G such that each vertex is contained in at most k cliques. The smallest k for which G admits a clique covering is called the local clique cover number of G and is denoted by lcc(G). Local clique cover number can be viewed as the local counterpart of the clique cover number that is equal to the minimum total number of cliques covering all edges. In this article, several aspects of the local clique covering problem are studied and its relationships to other well‐known problems are discussed. In particular, it is proved that the local clique cover number of every claw‐free graph is at most , where Δ is the maximum degree of the graph and c is a constant. It is also shown that the bound is tight, up to a constant factor. Moreover, regarding a conjecture by Chen et al. (Clique covering the edges of a locally cobipartite graph, Discrete Math 219(1–3)(2000), 17–26), we prove that the clique cover number of every connected claw‐free graph on n vertices with the minimum degree δ, is at most , where c is a constant.  相似文献   

5.
The second author's (B.A.R.) ω, Δ, χ conjecture proposes that every graph satisfies . In this article, we prove that the conjecture holds for all claw‐free graphs. Our approach uses the structure theorem of Chudnovsky and Seymour. Along the way, we discuss a stronger local conjecture, and prove that it holds for claw‐free graphs with a three‐colorable complement. To prove our results, we introduce a very useful χ‐preserving reduction on homogeneous pairs of cliques, and thus restrict our view to so‐called skeletal graphs.  相似文献   

6.
A graph G is a quasi‐line graph if for every vertex v, the set of neighbors of v can be expressed as the union of two cliques. The class of quasi‐line graphs is a proper superset of the class of line graphs. A theorem of Shannon's implies that if G is a line graph, then it can be properly colored using no more than 3/2 ω(G) colors, where ω(G) is the size of the largest clique in G. In this article, we extend this result to all quasi‐line graphs. We also show that this bound is tight. © 2006 Wiley Periodicals, Inc. J Graph Theory  相似文献   

7.
A 1‐factorization of a graph G is a decomposition of G into edge‐disjoint 1‐factors (perfect matchings), and a perfect 1‐factorization is a 1‐factorization in which the union of any two of the 1‐factors is a Hamilton cycle. We consider the problem of the existence of perfect 1‐factorizations of even order 4‐regular Cayley graphs, with a particular interest in circulant graphs. In this paper, we study a new family of graphs, denoted , which are Cayley graphs if and only if k is even or . By solving the perfect 1‐factorization problem for a large class of graphs, we obtain a new class of 4‐regular bipartite circulant graphs that do not have a perfect 1‐factorization, answering a problem posed in 7 . With further study of graphs, we prove the nonexistence of P1Fs in a class of 4‐regular non‐bipartite circulant graphs, which is further support for a conjecture made in 7 .  相似文献   

8.
We show that every 3‐connected claw‐free graph which contains no induced copy of P11 is hamiltonian. Since there exist non‐hamiltonian 3‐connected claw‐free graphs without induced copies of P12 this result is, in a way, best possible. © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 111–121, 2004  相似文献   

9.
We conjecture that, for each tree T, there exists a natural number kT such that the following holds: If G is a kT‐edge‐connected graph such that |E(T)| divides |E(G)|, then the edges of G can be divided into parts, each of which is isomorphic to T. We prove that for T = K1,3 (the claw), this holds if and only if there exists a (smallest) natural number kt such that every kt‐edge‐connected graph has an orientation for which the indegree of each vertex equals its outdegree modulo 3. Tutte's 3‐flow conjecture says that kt = 4. We prove the weaker statement that every 4$\lceil$ log n$\rceil$ ‐edge‐connected graph with n vertices has an edge‐decomposition into claws provided its number of edges is divisible by 3. We also prove that every triangulation of a surface has an edge‐decomposition into claws. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 135–146, 2006  相似文献   

10.
We introduce a closure concept that turns a claw‐free graph into the line graph of a multigraph while preserving its (non‐)Hamilton‐connectedness. As an application, we show that every 7‐connected claw‐free graph is Hamilton‐connected, and we show that the well‐known conjecture by Matthews and Sumner (every 4‐connected claw‐free graph is hamiltonian) is equivalent with the statement that every 4‐connected claw‐free graph is Hamilton‐connected. Finally, we show a natural way to avoid the non‐uniqueness of a preimage of a line graph of a multigraph, and we prove that the closure operation is, in a sense, best possible. © 2010 Wiley Periodicals, Inc. J Graph Theory 66:152‐173, 2011  相似文献   

11.
We consider the existence of several different kinds of factors in 4‐connected claw‐free graphs. This is motivated by the following two conjectures which are in fact equivalent by a recent result of the third author. Conjecture 1 (Thomassen): Every 4‐connected line graph is hamiltonian, i.e., has a connected 2‐factor. Conjecture 2 (Matthews and Sumner): Every 4‐connected claw‐free graph is hamiltonian. We first show that Conjecture 2 is true within the class of hourglass‐free graphs, i.e., graphs that do not contain an induced subgraph isomorphic to two triangles meeting in exactly one vertex. Next we show that a weaker form of Conjecture 2 is true, in which the conclusion is replaced by the conclusion that there exists a connected spanning subgraph in which each vertex has degree two or four. Finally we show that Conjectures 1 and 2 are equivalent to seemingly weaker conjectures in which the conclusion is replaced by the conclusion that there exists a spanning subgraph consisting of a bounded number of paths © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 125–136, 2001  相似文献   

12.
Let G be a regular bipartite graph and . We show that there exist perfect matchings of G containing both, an odd and an even number of edges from X if and only if the signed graph , that is a graph G with exactly the edges from X being negative, is not equivalent to . In fact, we prove that for a given signed regular bipartite graph with minimum signature, it is possible to find perfect matchings that contain exactly no negative edges or an arbitrary one preselected negative edge. Moreover, if the underlying graph is cubic, there exists a perfect matching with exactly two preselected negative edges. As an application of our results we show that each signed regular bipartite graph that contains an unbalanced circuit has a 2‐cycle‐cover such that each cycle contains an odd number of negative edges.  相似文献   

13.
We study the perfect 2‐colorings (also known as the equitable partitions into two parts or the completely regular codes with covering radius 1) of the Johnson graphs . In particular, we classify all the realizable quotient matrices of perfect 2‐colorings for odd v. © 2012 Wiley Periodicals, Inc. J. Combin. Designs 21: 232–252, 2013  相似文献   

14.
It is easy to characterize chordal graphs by every k‐cycle having at least f(k) = k ? 3 chords. I prove new, analogous characterizations of the house‐hole‐domino‐free graphs using f(k) = 2?(k ? 3)/2?, and of the graphs whose blocks are trivially perfect using f(k) = 2k ? 7. These three functions f(k) are optimum in that each class contains graphs in which every k‐cycle has exactly f(k) chords. The functions 3?(k ? 3)/3? and 3k ? 11 also characterize related graph classes, but without being optimum. I consider several other graph classes and their optimum functions, and what happens when k‐cycles are replaced with k‐paths. © 2010 Wiley Periodicals, Inc. J Graph Theory 68:137‐147, 2011  相似文献   

15.
Let G be a graph and let V0 = {ν∈ V(G): dG(ν) = 6}. We show in this paper that: (i) if G is a 6‐connected line graph and if |V0| ≤ 29 or G[V0] contains at most 5 vertex disjoint K4's, then G is Hamilton‐connected; (ii) every 8‐connected claw‐free graph is Hamilton‐connected. Several related results known before are generalized. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

16.
A classification of connected vertex‐transitive cubic graphs of square‐free order is provided. It is shown that such graphs are well‐characterized metacirculants (including dihedrants, generalized Petersen graphs, Möbius bands), or Tutte's 8‐cage, or graphs arisen from simple groups PSL(2, p).  相似文献   

17.
The following question was raised by Bruce Richter. Let G be a planar, 3‐connected graph that is not a complete graph. Denoting by d(v) the degree of vertex v, is G L‐list colorable for every list assignment L with |L(v)| = min{d(v), 6} for all vV(G)? More generally, we ask for which pairs (r, k) the following question has an affirmative answer. Let r and k be the integers and let G be a K5‐minor‐free r‐connected graph that is not a Gallai tree (i.e. at least one block of G is neither a complete graph nor an odd cycle). Is G L‐list colorable for every list assignment L with |L(v)| = min{d(v), k} for all vV(G)? We investigate this question by considering the components of G[Sk], where Sk: = {vV(G)|d(v)8k} is the set of vertices with small degree in G. We are especially interested in the minimum distance d(Sk) in G between the components of G[Sk]. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:18–30, 2012  相似文献   

18.
Triangle‐free quasi‐symmetric 2‐ designs with intersection numbers ; and are investigated. Possibility of triangle‐free quasi‐symmetric designs with or is ruled out. It is also shown that, for a fixed x and a fixed ratio , there are only finitely many triangle‐free quasi‐symmetric designs. © 2012 Wiley Periodicals, Inc. J Combin Designs 00: 1‐6, 2012  相似文献   

19.
In this article, we introduce and study the properties of some target graphs for 2‐edge‐colored homomorphism. Using these properties, we obtain in particular that the 2‐edge‐colored chromatic number of the class of triangle‐free planar graphs is at most 50. We also show that it is at least 12.  相似文献   

20.
Polarity and monopolarity are properties of graphs defined in terms of the existence of certain vertex partitions; graphs with polarity and monopolarity are respectively called polar and monopolar graphs. These two properties commonly generalize bipartite and split graphs, but are hard to recognize in general. In this article we identify two classes of graphs, triangle‐free graphs and claw‐free graphs, restricting to which provide novel impact on the complexity of the recognition problems. More precisely, we prove that recognizing polarity or monopolarity remains NP‐complete for triangle‐free graphs. We also show that for claw‐free graphs the former is NP‐complete and the latter is polynomial time solvable. This is in sharp contrast to a recent result that both polarity and monopolarity can be recognized in linear time for line graphs. Our proofs for the NP‐completeness are simple reductions. The polynomial time algorithm for recognizing the monopolarity of claw‐free graphs uses a subroutine similar to the well‐known breadth‐first search algorithm and is based on a new structural characterization of monopolar claw‐free graphs, a generalization of one for monopolar line graphs obtained earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号