首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A series of new 2,4‐diaminothieno[2,3‐d]‐ and 2,4‐diaminopyrrolo[2,3‐d]pyrimidine derivatives were synthesised. Reaction of 2‐amino‐4,6‐dichloropyrimidine‐5‐carbaldehyde ( 1 ) with ethyl mercaptoacetate, methyl N‐methylglycinate or ethyl glycinate afforded ethyl (2‐amino‐4‐chloro‐5‐formylpyrimidin‐6‐yl)thioacetate ( 2a ), methyl N‐(2‐amino‐4‐chloro‐5‐formylpyrimidin‐6‐yl)‐N‐methylglycinate ( 2b ) and ethyl N‐(2‐amino‐4‐chloro‐5‐formylpyrimidin‐6‐yl)glycinate ( 2c ), respectively. Compounds 2a,b by treatment with bases cyclised to the corresponding 2‐amino‐4‐chlorothieno‐ and pyrrolo[2,3‐d]pyrimidine‐6‐carboxylates ( 3a,b ). Heating 2,4‐diamino‐6‐chloropyrimidine‐5‐carbaldehyde ( 5 ) with ethyl mercaptoacetate or methyl N‐methylglycinate gave 2,4‐diaminothieno[2,3‐d]‐ and 2,4‐diaminopyrrolo[2,3‐d]‐pyrimidine‐6‐carboxylates ( 6a,b ), whereas compound 5 with ethyl glycinate under the same reaction conditions afforded ethyl N‐(2,4‐diamino‐5‐formylpyrimidin‐6‐yl)glycinate ( 7 ). Treatment of 2,4‐diaminothieno[2,3‐d]pyrimidine‐6‐carboxylic acid ( 8a ) with 4‐methoxy‐, 3,4,5‐trimethoxyanilines or ethyl N‐(4‐aminobenzoyl)‐L‐glutamate in the presence of dicyclohexylcarbodiimide and 1‐hydroxybenzotriazole furnished the corresponding N‐arylamides 9‐11.  相似文献   

2.
A number of coumarino[6,7‐d]oxazoles (nitrogen analogs of psoralens) have been synthesized from (7‐hydroxy‐2‐oxo‐2H‐chromen‐4‐yl) acetic acid ethyl ester 1 . The synthetic route began with the nitration of 1 with nitric acid in acetic acid to give (6‐nitro‐7‐hydroxy‐2‐oxo‐2H‐chromen‐4‐yl) acetic acid ethyl ester 2 ; (3,6‐dinitro‐7‐hydroxy‐2‐oxo‐2H‐chromen‐4‐yl) acetic acid ethyl ester 3 and (3,6,8‐trinitro‐7‐hydroxy‐2‐oxo‐2H‐chromen‐4‐yl) acetic acid ethyl ester 4 . The reduction of 2 was accomplished with tin(II) chloride, tin, and concentrated hydrochloric acid in ethanol giving (6‐amino‐7‐hydroxy‐2‐oxo‐2H‐chromen‐4‐yl) acetic acid ethyl ester 5 . After the condensation of aminocoumarin 5 with aromatic aldehyde in glacial acetic acid medium, followed the dehydrocyclization to coumarino[6,7‐d]oxazoles 7a‐k . The intermediate Schiff's bases 6a‐k have been obtained from 5 with aromatic aldehyde in ethanol. Antibacterial and antifungal activities of the compounds have been evaluated.  相似文献   

3.
Regioselectively ethylated celluloses, 2‐O‐ ( 1 ), 3‐O‐ ( 2 ), and 6‐O‐ethyl‐ ( 3 ) celluloses were synthesized via ring‐opening polymerization of glucopyranose orthopivalate derivatives. The number‐average degrees of polymerization (DPns) of compounds 1 and 2 were calculated to be 10.6 and 49.4, respectively. Three kinds of compound 3 with different DPns were prepared: DPns = 12.9 ( 3‐1 ), 60.3 ( 3‐2 ), and 36.1 ( 3‐3 ). The 2‐O‐, 3‐O‐, and 6‐O‐ethylcelluloses were soluble in water, confirmed by NMR analysis. Furthermore, the 3‐O‐ ( 2 ), and 6‐O‐ethyl‐ ( 3‐2 ) celluloses showed thermo‐responsive aggregation behavior and had a lower critical solution temperature (LCST) at about 40 °C and 70 °C, respectively, based on the results from turbidity tests and DSC measurements. The 6‐O‐ethyl‐cellulose ( 3‐3 ) with DPn = 36.1 and DPw = 54.6 showed gelation behavior over approx 70 °C, whereas the 6‐O‐ethyl‐celluloses 3‐1 and 3‐2 with lower and higher molecular weight, such as DPns 12.9 and 60.3, did not show gelation behavior at this temperature. It was revealed that the position of ethyl group affected the phase transition temperature. According to our experiments, the 3‐O‐ethyl and 6‐O‐ethyl groups along the cellulose chains caused the thermo‐responsive property of their aqueous solutions. The appropriate DP of the regioselective 6‐O‐ethyl‐cellulose existed for gelation of the aqueous solution.

  相似文献   


4.
As part of the structure‐activity relationship of the dopamine D2 and serotonin 5‐HT3 receptors antagonist 1, which is a clinical candidate with a broad antiemetic activity, the synthesis and dopamine D2 and serotonin 5‐HT3 receptors binding affinity of (R)‐5‐bromo‐N‐(1‐ethyl‐3‐methylhexahydro‐1,3‐diazin‐5‐yl)‐ and (R)‐5‐bromo‐N‐(1‐ethyl‐5‐methyloctahydro‐1,5‐diazocin‐3‐yl)‐2‐methoxy‐6‐methylaminopyridine‐3‐carboxam‐ides ( 2 and 3 ) are described. Treatment of 1‐ethyl‐2‐(p‐toluenesulfonyl)amino‐3‐methylaminopropane dihy‐drochloride ( 4a ) with paraformaldehyde and successive deprotection gave the 5‐aminohexahydro‐1,3‐diazine 6 in excellent yield. 3‐Amino‐1‐ethyl‐5‐methyloctahydro‐1,5‐diazocine ( 15 ) was prepared from 2‐(benzyloxycarbonyl)amino‐3‐[[N‐(tert‐butoxycarbonyl)‐N‐methyl]amino]‐1‐ethylaminopropane ( 9 ) through the intramolecular amidation of (R)‐3‐[N‐[(2‐benzyloxycarbonylamino‐3‐methylamino)propyl]‐N‐ethyl]aminopropionic acid trifluoroacetate ( 12 ), followed by lithium aluminum hydride reduction of the resulting 6‐oxo‐1‐ethyl‐5‐methyloctahydrodiazocine ( 13 ) in 41% yield. Reaction of the amines 6 and 15 with 5‐bromo‐2‐methoxy‐6‐methylaminopyridine‐3‐carboxylic acid furnished the desired 2 and 3 , which showed much less potent affinity for dopamine D2 receptors than 1 .  相似文献   

5.
In this research, in order to synthesize a series of ethyl 2‐amino‐4‐benzoyl‐5‐oxo‐5,6‐dihydro‐4H‐pyrano[3,2‐c]quinoline‐3‐carboxylates, a green and an efficient method is proposed through one‐pot three‐component reaction of substituted arylglyoxals, ethyl cyanoacetate, and 4‐hydroxyquinolin‐2(1H)‐one in the presence of terapropylammonium bromide as a catalyst in good yields. All synthesized new substances were characterized by FTIR, 1H‐NMR, and 13C‐NMR spectral data and elemental analysis.  相似文献   

6.
The crystal structures of (1R,1′S)‐2′,2′‐di­chloro‐N‐(1‐phenyl­ethyl)­cyclo­propane‐1′‐carbox­amide, C12H13Cl2NO, (I), and (1R,1′R)‐2′,2′‐di­fluoro‐N‐(1‐phenyl­ethyl)­cyclo­propane‐1′‐car­box­amide, C12H13F2NO, (II), have been determined. Both crystals contain two independent mol­ecules with different conformations of the phenyl­ethyl groups. In the crystals of both compounds, the mol­ecules are linked together by N—H⃛O hydrogen bonds, thus forming chains in the a direction.  相似文献   

7.
Ethyl 3,4‐dihydro‐2H‐1,4‐benzoxazine‐3‐carboxylate derivatives 2 were obtained and isolated in low yields from the condensation of 2‐aminophenol and ethyl 2,3‐dibromopropanoate. They can be obtained by hydrogenation of ethyl 2H‐1,4‐benzoxazine‐3‐carboxylate in satisfactory yield. Using 2‐iminophenol did not direct the condensation with ethyl 2,3‐dibromopropanoate towards 2 but was fruitfull for the preparation of ethyl 2‐(4‐benzyl‐3,4‐dihydro‐2H‐1,4‐benzoxazin‐3‐yl)acetate from ethyl bromocrotonate.  相似文献   

8.
A series of well‐defined double hydrophilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐(diethylamino)ethyl methacrylate) (PDEA) side chains, were synthesized by successive atom transfer radical polymerization (ATRP). The backbone was firstly prepared by sequential ATRP of N‐isopropylacrylamide and 2‐hydroxyethyl acrylate at 25 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained diblock copolymer was transformed into macroinitiator by reacting with 2‐chloropropionyl chloride. Next, grafting‐from strategy was employed for the synthesis of poly(N‐isopropylacrylamide)‐b‐[poly(ethyl acrylate)‐g‐poly(2‐(diethylamino)ethyl methacrylate)] (PNIPAM‐b‐(PEA‐g‐PDEA)) double hydrophilic graft copolymer. ATRP of 2‐(diethylamino)ethyl methacrylate was initiated by the macroinitiator at 40 °C using CuCl/hexamethyldiethylenetriamine as catalytic system. The molecular weight distributions of double hydrophilic graft copolymers kept narrow. Thermo‐ and pH‐responsive micellization behaviors were investigated by fluorescence spectroscopy, 1H NMR, dynamic light scattering, and transmission electron microscopy. Unimolecular micelles with PNIPAM‐core formed in acidic environment (pH = 2) with elevated temperature (≥32 °C); whereas, the aggregates turned into vesicles in basic surroundings (pH ≥ 7.2) at room temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5638–5651, 2008  相似文献   

9.
A one‐step synthesis of ethyl 2,3‐dihydronaphtho[1,2‐b]furan‐2‐carboxylate and/or ethyl 4′‐oxospiro[cyclopropane‐1,1′(4′H)‐naphthalene]‐2′‐carboxylate derivatives 2 and 3 , respectively, from substituted naphthalen‐1‐ols and ethyl 2,3‐dibromopropanoate is described (Scheme 1). Compounds 2 were easily aromatized (Scheme 2). In the same way, 3,4‐dibromobutan‐2‐one afforded the corresponding 1‐(2,3‐dihydronaphtho[1,2‐b]furan‐2‐yl)ethanone and/or spiro derivatives 8 and 9 , respectively (Scheme 6). A mechanism for the formation of the dihydronaphtho[1,2‐b]furan ring and of the spiro compounds 3 is proposed (Schemes 3 and 4). The structures of spiro compounds 3a and 3f were established by X‐ray structural analysis. The reactivity of compound 3a was also briefly examined (Scheme 9).  相似文献   

10.
Behaviour of 2‐(4‐oxo‐4H‐benzo[d][l,3]oxazin‐2‐yl)‐benzoic acid (1) towards nitrogen nucleophiles namely, hydrazine hydrate, in different solvents, ammonium acetate, and o‐phenylenediamine has been investigated to give aminoquinazolin‐4‐one, benzotriazepinone, spiro‐type compound, and nitrogen bridgehead compounds 3‐5 , respectively. Also, reactivity of the aminoquinazolin‐4‐one 2 towards carbon elec‐trophiles such as ethyl acetoacetate, ethyl phenylacetate, ethyl chloroacetate, and aromatic aldehydes has been discussed. Reaction of Schiff s base 8 with sulfur nucleophiles namely o‐aminothiophenol and/or thio‐glycolic acid afforded Michael type adducts. Structural assignments, of products 1‐24 have been confirmed by elemental analysis and spectral data (1H‐ and 13C ‐NMR and MS fragmentation). The bioassay indicates that some of the target compounds obtained have good selective anticancer activity.  相似文献   

11.
The synthesis of scopin acetate ( 6b ) and 6,7‐didehydrohyoscyamine ( 17 ) was achieved by using tropine ( 5 ) as the starting compound. Formal (phenylthio)‐radical transfer to the nonactivated 6‐position of ethyl N‐demethyl‐3‐O‐(phenylthio)tropine‐N‐carboxylate ( 9 ) by irradiation in the presence of hexabutyldistannane is a key step of this synthetic approach, involving ethyl 6,7‐didehydro‐N‐demethyltropine‐N‐carboxylate ( 15 ) as a synthetic intermediate (Schemes 3 and 5). The reaction of 9 with tributylstannane in the presence of ethyl acrylate, as a radicophilic olefin, involves Michael‐type alkylation at C(6) of the tropine skeleton affording ethyl N‐demethyl‐N‐(ethoxycarbonyl)tropine‐6‐propanoate ( 18 ) (Scheme 6).  相似文献   

12.
Starting from ethyl propionylacetate, and ethyl 2‐ethylacetoacetate we prepared 4‐propyl‐7,8‐, 4‐propyl‐6,7‐, 3‐ethyl‐4‐methyl‐7,8‐ and 3‐ethyl‐4‐methyl‐6,7‐dihydroxy‐2H‐chromenones which were allowed to react with the bis‐dihalides or ditosylates of glycols in DMF/Na2CO3 to afford the 6,7‐ and 7,8‐chromenone derivatives of 12‐crown‐4, 15‐crown‐4 and 18‐crown‐6. The products were identified using ir, 13C and 1H nmr, ms and high resolution mass spectroscopy. The cation selectivities of chromenone crown ethers with Li+, Na+ and K+ cations were estimated from the steady state emission fluorescence spectra of free and cation complexed chromenone macrocyclic ethers in acetonitrile.  相似文献   

13.
An efficient general route to the synthesis of 5‐substituted 1H‐1,2,4‐triazole‐3‐carboxylates was developed. N‐acylamidrazones were obtained from carboxylic acid hydrazides and ethyl thiooxamate or ethyl 2‐ethoxy‐2‐iminoacetate hydrochloride and then were reacted with chloroanhydride of the same carboxylic acid. As the next step, diacylamidrazones were cyclized to 5‐substituted 1H‐1,2,4‐triazole‐3‐carboxylates one pot in mild conditions.  相似文献   

14.
Two‐step synthesis of N‐aryl 4‐[(ethoxycarbonyl) oxy]‐1H‐pyrazole‐3‐carboxylates is achieved starting from the commercially available ethyl 4‐chloroacetoacetate and aromatic amines. Azo coupling followed by cyclization with ethyl chloroformate–DMAP pair resulted in the formation of new 4‐oxy‐1H‐pyrazole derivatives in high yields.  相似文献   

15.
1‐[2‐Phenyl‐1‐diazenyl]‐1‐[2‐phenylhydrazono]acetone or 1‐[‐2‐(4‐methylphenyl)‐1‐diazenyl]‐1‐[‐2‐(4‐methylphenyl)hydrazono]‐butan‐2‐one were produced via coupling the (E) 2‐oxopropanal‐1‐phenyl‐hydrazone or (E) 2‐oxobutanal‐1‐(4‐methylphenyl)hydrazone with aromatic diazonium salts. These formazanes condensed readily with ethyl cyanoacetate to yield 5‐methyl‐3‐oxo‐2‐phenyl‐6‐phenylazo‐2,3‐dihydropyridazine‐4‐carbonitrile compound ( 9a ), 5‐ethyl‐3‐oxo‐2‐p‐tolyl‐6‐p‐tolylazo‐2,3‐dihydro‐pyridazine‐4‐carbonitrile and/or 5‐ethyl‐3‐oxo‐2,6‐di‐p‐tolyl‐2,3‐dihydropyridazine‐4‐carbonitrile that reacted with sulphur in presence of piperidine to yield the aminothienopyridazinones. The latter reacted with electron poor olefins and acetylenes to yield aminophthalazines. Compound ( 9a ) reacted also with benzylidenemalononitrile to yield the arylazophthalazinone.  相似文献   

16.
Fused tetracycles, 6‐alkyl‐3‐alkoxy‐2‐cyano‐4,5,6a,11‐tetraazabenzo[a]fluorene derivatives ( 5a , b , c , d , e , f ), are synthesized from 2‐alkoxy‐5‐(benzimidazol‐2‐ylidene)‐3‐cyano‐6‐imino‐5,6‐dihydro‐pyridines ( 4b , c ), and when refluxed in ethyl orthoacetate or ethyl orthopropionate, the elecrophilic aromatic substitution occurs at the ortho position of the cyanopyridine ring in the fused tetracycles ( 5b , c , e , f ) to afford 6‐alkyl‐3‐alkoxy‐2‐cyano‐1‐ethyl‐4,5,6a,11‐tetraazabenzo[a]fluorenes( 6b , c , e , f ).  相似文献   

17.
Density functional theory (DFT) and ab initio methods were used to study gas‐phase pyrolytic reaction mechanisms of iV‐ethyl, N‐isopropyl and N‐t‐butyl substituted 2‐aminopyrazine at B3LYP/6–31G* and MP2/6–31G*, respectively. Single‐point energies of all optimized molecular geometries were calculated at B3LYP/6–311 + G(2d,p) level. Results show that the pyrolytic reactions were carried out through a unimolecular first‐order mechanism which were caused by the migration of atom H(17) via a six‐member ring transition state. The activation energies which were verified by vibrational analysis and correlated with zero‐point energies along the reaction channel at B3LYP/6–311 + G(2d,p) level were 252.02 kJ. mo?1 (N‐ethyl substituted), 235.92 kJ‐mol?1 (N‐t‐isopropyl substituted) and 234.27 kJ‐mol?1 (N‐t‐butyl substituted), respectively. The results were in good agreement with available experimental data.  相似文献   

18.
A series of well‐defined amphiphilic graft copolymer containing hydrophobic polyallene‐based backbone and hydrophilic poly(2‐(diethylamino)ethyl acrylate) (PDEAEA) side chains was synthesized by sequential living coordination polymerization of 6‐methyl‐1,2‐heptadiene‐4‐ol (MHDO) and single electron transfer‐living radical polymerization (SET‐LRP) of 2‐(diethylamino)ethyl acrylate (DEAEA). Ni‐catalyzed living coordination polymerization of MHDO was first performed in toluene to give a well‐defined double‐bond‐containing poly(6‐methyl‐1,2‐heptadiene‐4‐ol) (PMHDO) homopolymer with a low polydispersity (Mw/Mn = 1.10). Next, 2‐chloropropionyl chloride was used for the esterification of pendant hydroxyls in every repeating unit of the homopolymer so that the homopolymer was converted to PMHDO‐Cl macroinitiator. Finally, SET‐LRP of DEAEA was initiated by the macroinitiator in tetrahydrofuran/H2O using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system to afford well‐defined PMHDO‐g‐PDEAEA graft copolymers (Mw/Mn ≤ 1.22) through the grafting‐from strategy. The critical micelle concentration (cmc) was determined by ?uorescence spectroscopy with N‐phenyl‐1‐naphthylamine as probe and the micellar morphology was visualized by transmission electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
Bicycle ring closure on a mixture of (4aS,8aR)‐ and (4aR,8aS)‐ethyl 2‐oxodecahydro‐1,6‐naphthyridine‐6‐carboxylate, followed by conversion of the separated cis and trans isomers to the corresponding thioamide derivatives, gave (4aSR,8aRS)‐ethyl 2‐sulfanylidenedecahydro‐1,6‐naphthyridine‐6‐carboxylate, C11H18N2O2S. Structural analysis of this thioamide revealed a structure with two crystallographically independent conformers per asymmetric unit (Z′ = 2). The reciprocal bicycle ring closure on (3aRS,7aRS)‐ethyl 2‐oxooctahydro‐1H‐pyrrolo[3,2‐c]pyridine‐5‐carboxylate, C10H16N2O3, was also accomplished in good overall yield. Here the five‐membered ring is disordered over two positions, so that both enantiomers are represented in the asymmetric unit. The compounds act as key intermediates towards the synthesis of potential new polycyclic medicinal chemical structures.  相似文献   

20.
A series of well‐defined double‐hydrophilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐(dimethylamino)ethyl acrylate) (PDMAEA) side chains, were synthesized by the combination of single‐electron‐transfer living radical polymerization (SET‐LRP) and atom‐transfer radical polymerization (ATRP). PNIPAM‐b‐PEA backbone was first prepared by sequential SET‐LRP of N‐isopropylacrylamide and 2‐hydroxyethyl acrylate at 25 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system followed by the transformation into the macroinitiator by treating the pendant hydroxyls with 2‐chloropropionyl chloride. The final graft copolymers with narrow molecular weight distributions were synthesized by ATRP of 2‐(dimethylamino)ethyl acrylate initiated by the macroinitiator at 40 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system via the grafting‐from strategy. These copolymers were employed to prepare stable colloidal gold nanoparticles with controlled size in aqueous solution without any external reducing agent. The morphology and size of the nanoparticles were affected by the length of PDMAEA side chains, pH value, and the feed ratio of the graft copolymer to HAuCl4. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1811–1824, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号