首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyanothioacetamide ( 1 ) reacted with but‐2‐enal ( 2 ) to give the corresponding 4‐methyl‐2‐sulfanylpyridine‐3‐carbonitrile ( 7 ) which was used as a good starting material for the synthesis of 1‐(3‐amino‐4‐methylthieno[2,3‐b]pyridin‐2‐yl)ethan‐1‐one ( 10 ), 3‐amino‐4‐methylthieno[2,3‐b]pyridine‐2‐carboxamide ( 15 ), 3‐amino‐4‐methylthieno[2,3‐b]pyridine‐2‐carboxylate ( 18 ) and 3‐amino‐4‐methylthieno[2,3‐b]pyridin‐2‐ylarylketone 25a‐c through its reactions with each of (1‐chloroacetone ( 8 ), 3‐chloropentane‐2,4‐dione ( 11 ) or ethyl 2‐chloro‐3‐oxo‐butanoate ( 19 )), 2‐chloroacetamide ( 13 ), ethyl 2‐chloroacetate ( 16 ) and 2‐bromo‐1‐arylethan‐ 1 ‐one 23a‐c , respectively. Considering the data of elemental analyses, IR, 1HNMR, mass spectra and theoretical calculations, structures of the newly synthesized heterocyclic compounds were elucidated.  相似文献   

2.
The reaction of aryl(3‐isocyanopyridin‐4‐yl)methanones 1 , easily prepared from commercially available pyridin‐3‐amine, with aryl Grignard reagents gave, after aqueous workup, 2,3‐diaryl‐3H‐pyrrolo[2,3‐c]pyridin‐3‐ols 2 . These rather unstable alcohols were O‐acylated with Ac2O in pyridine in the presence of a catalytic amount of 4‐(dimethylamino)pyridine (DMAP) to afford the corresponding 2,3‐diaryl‐3H‐pyrrolo[2,3‐c]pyridin‐3‐yl acetates 3 in relatively good yields.  相似文献   

3.
Cyclization of 5‐cyano‐1,6‐dihydro‐4‐methyl‐2‐phenyl‐6‐thioxopyrimidine 4 with excess of 85% hydrazine hydrate afforded the 3‐amino‐4‐methyl‐6‐phenylpyrazolo[3,4‐d]pyrimidine 5 , which can react with appropriate Mannich base derivatives 13a‐c and chalcones 27a,b to yield the corresponding 6,8‐disubstituted 7,8‐dihydropyrimido[2,3:4,3]pyrazolo[1,5‐a]pyrimidines 15a‐c and 30a,b , respectively. On the other hand, the 6,7,8‐trisubstituted pyrimido[2,3:4,3]pyrazolo[1,5‐a]pyrimidine derivatives 8a‐g, 20a‐e, 36 and 38 were obtained by treatment of compound 5 with appropriate 1,3‐diketones 6a‐g , 3‐dimethylamino‐1‐(substituted)prop‐2‐enones 18a‐e , 3‐aminocrotononitrile 3 , and ethoxymethylenemalononitrile 37 under acidic condition, respectively.  相似文献   

4.
The highly reactive 1 : 1 intermediate generated in the reaction between dialkyl acetylenedicarboxylate (=but‐2‐ynedioic acid dialkyl ester) 4 and triphenylphosphine was trapped by 2‐amino‐4‐oxo‐4H‐1‐benzopyran‐3‐carboxaldehydes 5 to yield highly functionalized dialkyl‐1,5‐dihydro‐5‐oxo‐1‐phenyl‐2H‐[1]benzopyrano[2,3‐b]pyridine‐2,3‐dicarboxylates in high yield.  相似文献   

5.
A series of functionalized H‐[1]benzopyrano[2,3‐b]pyridine derivatives were synthesized by the Friedländer reaction of 2‐amino‐4‐oxo‐4H‐chromene‐3‐carbonitriles 1 with malononitrile, ethyl cyanoacetate, or acetophenone (Scheme). The synthesized compounds 2 – 4 were screened for their in vitro activity against antitubercular, antibacterial, and antifungal species (Fig., Table). Among the synthesized compounds, 3c and 4f were the most active with 99% inhibition against Mycobacterium tuberculosis H37Rv, while compounds 2f, 3f , and 4d exhibited 69%, 63%, and 61% inhibition, respectively. The 4‐amino‐7,9‐dibromo‐1,5‐dihydro‐2,5‐dioxo‐2H‐chromeno[2,3‐b]pyridine‐3‐carbonitrile ( 3b ) showed the most potent antibacterial activity against Escherichia coli and Pseudomonas aeruginosa. Several chromeno[2,3‐b]pyridine derivatives showed equal or more potency against Staphylococcus aureus and Candida albicans.  相似文献   

6.
A novel and efficient isocyanide‐based multicomponent reaction between alkyl or aryl isocyanides 1 , 2,3‐diaminomaleonitrile ( 2 ), naphthalene‐2,3‐diamines ( 6 ) or benzene‐1,2‐diamine ( 9 ), and 3‐oxopentanedioic acid ( 3 ) or Meldrum's acid ( 4 ) or ketones 7 was developed for the ecologic synthesis, at room temperature under mild conditions, of 1,6‐dihydropyrazine‐2,3‐dicarbonitriles 5a – 5f in H2O without using any catalyst, and of 3,4‐dihydrobenzo[g]quinoxalin‐2‐amine and 3,4‐dihydro‐3,3‐dimethyl‐quinoxalin‐2‐amine derivatives 8a – 8g and 10a – 10e , respectively, in the presence of a catalytic amount of p‐toluenesulfonic acid (TsOH) in EtOH, in good to excellent yields (Scheme 1).  相似文献   

7.
A one step synthesis protocol for the conversion of heteroylthiosemicarbazides and 2,3‐dichloro‐1,4‐naphthoquinone to naphtho[2,3‐d]thiazoles, naphtho[2,3‐e][1,3,4]thiadiazines as well as bis(naphtho[2,3‐d]thiazolyl)copper(II) derivatives is described. The products were conclusively confirmed by single crystal X‐ray analyses. A mechanism for the formation of the products is presented.  相似文献   

8.
A series of novel 5‐(2,3,4,5‐tetrahydro‐1H‐chromeno[2,3‐d]pyrimidin‐5‐yl)pyrimidione derivatives have been synthesized from substituted salicylaldehydes and barbituric acid or 2‐thiobarbituric acid in water catalyzed by phase transfer catalysis of triethylbenzyl ammonium chloride (TEBA). Elemental analysis, IR, 1H NMR, and 13C NMR elucidated the structures of all the newly synthesized compounds. In vitro antimicrobial activities of synthesized compounds have been investigated against Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Pseudomonas aeruginosa. These newly synthesized derivatives exhibited significant in vitro antibacterial activity.  相似文献   

9.
An efficient one‐pot synthesis of novel heterocyclic derivatives, 2‐aryl‐1,4‐oxathiino[2,3‐b]quinoxalines or ‐pyrazines 5 , via the reaction of 2,3‐dichloroquinoxaline or ‐pyrazine with Na2S?9 H2O, and subsequent treatment of the resulting 2‐chloro‐3‐sodiosulfanylquinoxaline or ‐pyrazine 2 with 1‐aryl‐2‐bromo‐1‐alkanones and then NaH under mild conditions is described.  相似文献   

10.
Abstract

Benzothiophene -2- carbaldehyde 1 reacted with 2-cyanoethanethioamide 2 in 1:2 molar ratios to give the corresponding 6-amino-4-(benzo[b]thiophen-2-yl)-2-thioxo-1, 2-dihydropyridine-3,5-dicarbonitrile 6. The synthetic potentiality of compound 6 was investigated via its reaction with active halogen-containing reagents to afford the corresponding thieno[2,3-b]pyridine derivatives 11a,b, 14, 16, and 19. Also, compound 6 reacted with hydrazine hydrate to give the pyrazolo[3,4-b]pyridine derivative 21. Compound 21 condensed with 4-(2-thienyl)benzaldehyde to afford pyrazolo[3,4-b]pyridine derivative 23. Structural elucidation of all the newly synthesized heterocyclic compounds was based on elemental analyses, IR, 1H NMR, and mass spectra.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

11.
《中国化学会会志》2017,64(2):138-142
A simple, convenient, and eco‐friendly synthetic protocol has been developed via a one‐pot three‐component reaction between 2‐chloroquinoline‐4‐amines, different substituted aromatic aldehydes, and malononitrile using ethanol as reaction medium. Employing this protocol, a series of 5‐chloro‐4‐phenyl benzo[f ][1,6] naphthyridine‐2‐amino‐3‐carbonitrile derivatives were synthesized in an environmentally friendly approach under operational simplicity, short time reactions, easy work‐up procedure, and comparatively high yields. This chemistry provides a convenient and promising synthetic strategy for the construction of the napthyridine skeleton. All synthesized compounds were identified on the basis of their spectral data.  相似文献   

12.
Some of synthetic bicyclic and polynuclear heterocyclic compounds based on pyridine scaffold were tested as in vitro antitumor agents, and these compounds found to exhibit interesting activities. Fused heterocycles containing sulfur such as thienopyridine, pyridothiazine, and some related fused heterocycles as new ring systems were achieved. Bicyclic thienopyridine 6 and pyrido[3,2‐e][1,3]thiazin‐4(3H)‐one 7 exhibited good antitumor activities compared with 5‐fluorouracil.  相似文献   

13.
2-Thioxo-1,2-dihydropyridine derivatives 2a, 2b were reacted with methyl iodide to give 2-methylthiopyridines 3a, 3b, which were reacted with hydrazine hydrate to produce 3-aminopyrazolo[5,4-b]pyridines 4a, 4b. Compounds 4a, 4b were diazotized to afford the corresponding diazonium salts 5a, 5b, which were reacted with some active methylene compounds 6a-6h to give the corresponding pyrido[2′,3′ : 3,4]pyrazole[5,1-c][1,2,4]triazines 7-14.  相似文献   

14.
The title polymeric complex [Cu(C4H2O4)(C10H8N2)]n·2nH2O was prepared and its crystal structure was determined by X‐ray diffraction methods. The crystal belongs to space group P21/c with cell dimensions of a = 1.0104(1), b = 1.9952(2), c = 0.7357(2) nm, β= 98.38(2)° and Z = 4. The complex forms zig‐zag chains along crystallographic axis c via Cu—O (carboxyl) bond in the apical direction. Each repeated unit consists of a square pyramidal Cu(II) centre with one maleate dianion and one 2,2′‐bipyridine forming a basal plane. Adjacent chains link to each other by H‐bonding between carboxyl groups and crystalline water. The distance of 0.3482 nm between parallel bipyridine rings shows a π‐π stacking interaction. The title complex was also characterized by IR, UV and ESR spectra.  相似文献   

15.
Pyridine-2(1H)-thione derivatives 3a,b were synthesized from the reaction of 1-(phenyl-sulfanyl)acetone (1) and cinnnamonitrile derivatives 2a,b. Compounds 3a,b reacted with different halogenated reagents 7a–f to give 2-S-alkylpyridine derivatives 8a–l, which could be, in turn, cyclized into the corresponding thieno[2,3-b]pyridine derivatives 9a–l. Compounds 9d,j reacted with acetic anhydride, formic acid, carbon disulfide, phenyl isothiocyanate, and nitrous acid to yield the corresponding pyrido[3′,2′:4,5]thieno[2,3-d]pyrimidine 12a,b, 15a,b, 17a,b, 20a,b, and pyrido[3′,2′:4,5]thieno[2,3-d][1,2,3]triazinone derivatives 22a,b, respectively.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

16.
Pyridine-2(1H)-thione 5 was synthesized from the reaction of 3-[3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl]-1-phenylpropenone (3) and cynothioacetamide (4). Compound 5 reacted with halogented compounds 6a–e to give 2-S-alkylpyridine derivatives 7a–e, which could be in turn cyclized into the corresponding thieno[2,3-b]-pyridine derivatives 8a–e. Compound 8a reacted with hydrazine hydrate to give 9. The latter compound reacted with acetic anhydride (10a), formic acid (10b), acetic acid, ethyl acetoacetate, and pentane-2,4-dione to give the corresponding pyrido[3′,2′:4,5]thieno-[3,2-d]pyrimidine 13a,b, pyrazolo[3′,4′:4,5]thieno[3,2-d]pyridine 14 and thieno[2,3-b]-pyridine derivatives 18 and 20, respectively. Alternatively, 8c reacted with 10a,b and nitrous acid to afford the corresponding pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidine 24a,b and pyrido[3′,2′:4,5]thieno[3,2-d][1,2,3]triazine 26 derivatives, respectively. Finally compound 5 reacted with methyl iodide to give 2-methylthiopyridine derivative 27, which could be reacted with hydrazine hydrate to yield the corresponding pyrazolo[3,4-b]-pyridine derivative 29.  相似文献   

17.
An alternating narrow bandgap conjugated copolymer (PICZ‐DTBT, Eg = 1.83 eV) derived from 5,11‐di(9‐heptadecanyl)indolo[3,2‐b]carbazole and 4,7‐di(thieno[3,2‐b]thien‐2‐yl)‐2,1,3‐benzothiadiazole (DTBT), was prepared by the palladium‐catalyzed Suzuki coupling reaction. The resultant polymer absorbs light from 350–690 nm, exhibits two absorbance peaks at around 420 and 570 nm and has good solution processibility and thermal stability. The highest occupied molecular orbital (HOMO) energy level and lowest unoccupied molecular orbital (LUMO) level of the copolymer determined by cyclic voltammetry were about −5.18 and −3.35 eV, respectively. Prototype bulk heterojunction photovoltaic cells from solid‐state composite films based on PICZ‐DTBT and [6,6]‐phenyl‐C71 butyric acid methyl ester (PC71BM), show power conversion efficiencies up to 2.4% under 80 mW · cm−2 illumination (AM1.5) with an open‐circuit voltage of Voc = 0.75 V, a short current density of Jsc = 6.02 mA · cm−2, and a fill factor of 42%. This indicates that the copolymer PICZ‐DTBT is a viable electron donor material for polymeric solar cells.

  相似文献   


18.
The reaction of the aminopyrazole 1 with benzenesulfonyl chloride, arenediazonium salt, chloroacetyl chloride, ethoxy methyleneamlononitrile and with ethyl 2‐cyano‐3‐ethoxyacrylate gave the substituted 3‐methyl‐1‐phenylpyrazole 2–5a,b . Compound 5b was cyclized to 6 and to 7 by treating it with AlCl3 and with POCl3, respectively. Compound 6 converted to 7 by boiling it in POCl3/PCl5. Compound 10b was produced through reaction of 9 with acetophenone. Reaction of 1 with benzylidinemalononitrile afforded 11 . New methods for preparation of 15 and 16 are described. The reaction of 8 with malononitrile, thiosemicarbazide, phenyl hydrazine and acetophenone afforded compounds 18–21 . The reaction of 21 with malononitrile gave 22 . Compounds 23–26 were produced upon reaction of 10a with malononitrile, phenyl hydrazine, thiosemicarbazide, semicarbazide and with benzaldehyde, respectively.  相似文献   

19.
The condensed products 2‐10 of 4‐amino‐5‐mercapto‐3‐(5‐methylisoxazol‐3‐yl)‐l,2,4‐triazole (1) with chloroacetaldehyde, 2‐bromocyclohexanone, chloranil, ωbromo‐ω‐(1H‐1, 2,4‐triazol‐l‐yl)acetophenone, 2‐bromo‐4′‐substituted acetophenones and 2‐bromo‐6′‐methoxy‐2′‐acetonaphthone were described. The antibacterial activities were also evaluated.  相似文献   

20.
An efficient synthesis of pyrido[2,3‐d]pyrimidine derivatives via one‐pot multicomponent reactions of 6‐amino‐2‐(alkylthio)pyrimidin‐4(3H)‐one, 3‐cyanoacetylindole and arylaldehydes using [Fe3O4@ZrO2] as magnetically recyclable nanocatalyst is reported. This protocol furnished the desired products in good to excellent yields (70–93 %) and lower reaction times. The catalyst could be easily and efficiently separated from the final product solution by an external magnet and be reused in 5 consecutive runs without any significant activity decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号