首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 5 毫秒
1.
The k‐linkage problem is as follows: given a digraph and a collection of k terminal pairs such that all these vertices are distinct; decide whether D has a collection of vertex disjoint paths such that is from to for . A digraph is k‐linked if it has a k‐linkage for every choice of 2k distinct vertices and every choice of k pairs as above. The k‐linkage problem is NP‐complete already for [11] and there exists no function such that every ‐strong digraph has a k‐linkage for every choice of 2k distinct vertices of D [17]. Recently, Chudnovsky et al. [9] gave a polynomial algorithm for the k‐linkage problem for any fixed k in (a generalization of) semicomplete multipartite digraphs. In this article, we use their result as well as the classical polynomial algorithm for the case of acyclic digraphs by Fortune et al. [11] to develop polynomial algorithms for the k‐linkage problem in locally semicomplete digraphs and several classes of decomposable digraphs, including quasi‐transitive digraphs and directed cographs. We also prove that the necessary condition of being ‐strong is also sufficient for round‐decomposable digraphs to be k‐linked, obtaining thus a best possible bound that improves a previous one of . Finally we settle a conjecture from [3] by proving that every 5‐strong locally semicomplete digraph is 2‐linked. This bound is also best possible (already for tournaments) [1].  相似文献   

2.
The dicycle transversal number of a digraph D is the minimum size of a dicycle transversal of D, that is a set of vertices of D, whose removal from D makes it acyclic. An arc a of a digraph D with at least one cycle is a transversal arc if a is in every directed cycle of D (making acyclic). In [3] and [4], we completely characterized the complexity of following problem: Given a digraph D, decide if there is a dicycle B in D and a cycle C in its underlying undirected graph such that . It turns out that the problem is polynomially solvable for digraphs with a constantly bounded number of transversal vertices (including cases where ). In the remaining case (allowing arbitrarily many transversal vertices) the problem is NP‐complete. In this article, we classify the complexity of the arc‐analog of this problem, where we ask for a dicycle B and a cycle C that are arc‐disjoint, but not necessarily vertex‐disjoint. We prove that the problem is polynomially solvable for strong digraphs and for digraphs with a constantly bounded number of transversal arcs (but possibly an unbounded number of transversal vertices). In the remaining case (allowing arbitrarily many transversal arcs) the problem is NP‐complete.  相似文献   

3.
Using a suitable orientation, we give a short proof of a strengthening of a result of Czumaj and Strothmann 4 : Every 2‐edge‐connected graph G contains a spanning tree T with the property that for every vertex v. As an analogue of this result in the directed case, we prove that every 2‐arc‐strong digraph D has an out‐branching B such that . A corollary of this is that every k‐arc‐strong digraph D has an out‐branching B such that , where . We conjecture that in this case would be the right (and best possible) answer. If true, this would again imply a strengthening of a result from 4 concerning spanning trees with small degrees in k‐connected graphs when k ≥ 2. We prove that for acyclic digraphs the existence of an out‐branching satisfying prescribed bounds on the out‐degrees of each vertex can be checked in polynomial time. A corollary of this is that the existence of arc‐disjoint branchings , , where the first is an out‐branching rooted at s and the second an in‐branching rooted at t, can be checked in polynomial time for the class of acyclic digraphs © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 297–307, 2003  相似文献   

4.
In this article, we study the Drude models of Maxwell's equations in three‐dimensional metamaterials. We derive new global energy‐tracking identities for the three dimensional electromagnetic problems in the Drude metamaterials, which describe the invariance of global electromagnetic energy in variation forms. We propose the time second‐order global energy‐tracking splitting FDTD schemes for the Drude model in three dimensions. The significant feature is that the developed schemes are global energy‐preserving, unconditionally stable, second‐order accurate both in time and space, and computationally efficient. We rigorously prove that the new schemes satisfy these energy‐tracking identities in the discrete form and the discrete variation form and are unconditionally stable. We prove that the schemes in metamaterials are second order both in time and space. The superconvergence of the schemes in the discrete H1 norm is further obtained to be second order both in time and space. Their approximations of divergence‐free are also analyzed to have second‐order accuracy both in time and space. Numerical experiments confirm our theoretical analysis results. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 763–785, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号