首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A quasi‐kernel in a digraph is an independent set of vertices such that any vertex in the digraph can reach some vertex in the set via a directed path of length at most two. Chvátal and Lovász proved that every digraph has a quasi‐kernel. Recently, Gutin et al. raised the question of which digraphs have a pair of disjoint quasi‐kernels. Clearly, a digraph has a pair of disjoint quasi‐kernels cannot contain sinks, that is, vertices of outdegree zero, as each such vertex is necessarily included in a quasi‐kernel. However, there exist digraphs which contain neither sinks nor a pair of disjoint quasi‐kernels. Thus, containing no sinks is not sufficient in general for a digraph to have a pair of disjoint quasi‐kernels. In contrast, we prove that, for several classes of digraphs, the condition of containing no sinks guarantees the existence of a pair of disjoint quasi‐kernels. The classes contain semicomplete multipartite, quasi‐transitive, and locally semicomplete digraphs. © 2008 Wiley Periodicals, Inc. J Graph Theory 58:251‐260, 2008  相似文献   

2.
A k‐king in a digraph D is a vertex which can reach every other vertex by a directed path of length at most k. We consider k‐kings in locally semicomplete digraphs and mainly prove that all strong locally semicomplete digraphs which are not round decomposable contain a 2‐king. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 279–287, 2010  相似文献   

3.
Using a suitable orientation, we give a short proof of a strengthening of a result of Czumaj and Strothmann 4 : Every 2‐edge‐connected graph G contains a spanning tree T with the property that for every vertex v. As an analogue of this result in the directed case, we prove that every 2‐arc‐strong digraph D has an out‐branching B such that . A corollary of this is that every k‐arc‐strong digraph D has an out‐branching B such that , where . We conjecture that in this case would be the right (and best possible) answer. If true, this would again imply a strengthening of a result from 4 concerning spanning trees with small degrees in k‐connected graphs when k ≥ 2. We prove that for acyclic digraphs the existence of an out‐branching satisfying prescribed bounds on the out‐degrees of each vertex can be checked in polynomial time. A corollary of this is that the existence of arc‐disjoint branchings , , where the first is an out‐branching rooted at s and the second an in‐branching rooted at t, can be checked in polynomial time for the class of acyclic digraphs © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 297–307, 2003  相似文献   

4.
A digraph obtained by replacing each edge of a complete p‐partite graph by an arc or a pair of mutually opposite arcs with the same end vertices is called a semicomplete p‐partite digraph, or just a semicomplete multipartite digraph. A semicomplete multipartite digraph with no cycle of length two is a multipartite tournament. In a digraph D, an r‐king is a vertex q such that every vertex in D can be reached from q by a path of length at most r. Strengthening a theorem by K. M. Koh and B. P. Tan (Discr Math 147 (1995), 171–183) on the number of 4‐kings in multipartite tournaments, we characterize semicomplete multipartite digraphs, which have exactly k 4‐kings for every k = 1, 2, 3, 4, 5. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 177‐183, 2000  相似文献   

5.
In this paper we introduce a new class of directed graphs called locally semicomplete digraphs. These are defined to be those digraphs for which the following holds: for every vertex x the vertices dominated by x induce a semicomplete digraph and the vertices that dominate x induce a semicomplete digraph. (A digraph is semicomplete if for any two distinct vertices u and ν, there is at least one arc between them.) This class contains the class of semicomplete digraphs, but is much more general. In fact, the class of underlying graphs of the locally semi-complete digraphs is precisely the class of proper circular-arc graphs (see [13], Theorem 3). We show that many of the classic theorems for tournaments have natural analogues for locally semicomplete digraphs. For example, every locally semicomplete digraph has a directed Hamiltonian path and every strong locally semicomplete digraph has a Hamiltonian cycle. We also consider connectivity properties, domination orientability, and algorithmic aspects of locally semicomplete digraphs. Some of the results on connectivity are new, even when restricted to semicomplete digraphs.  相似文献   

6.
A digraph is locally-in semicomplete if for every vertex of D its in-neighborhood induces a semicomplete digraph and it is locally semicomplete if for every vertex of D the in-neighborhood and the out-neighborhood induces a semicomplete digraph. The locally semicomplete digraphs where characterized in 1997 by Bang-Jensen et al. and in 1998 Bang-Jensen and Gutin posed the problem if finding a kernel in a locally-in semicomplete digraph is polynomial or not. A kernel of a digraph is a set of vertices, which is independent and absorbent. A digraph D such that every proper induced subdigraph of D has a kernel is said to be critical kernel imperfect digraph (CKI-digraph) if the digraph D does not have a kernel. A digraph without an induced CKI-digraph as a subdigraph does have a kernel. We characterize the locally semicomplete digraphs, which are CKI. As a consequence of this characterization we conclude that determinate whether a locally semicomplete digraph is a CKI-digraph or not, is polynomial.  相似文献   

7.
Seymour conjectured that every oriented simple graph contains a vertex whose second neighborhood is at least as large as its first. Seymour's conjecture has been verified in several special cases, most notably for tournaments by Fisher  6 . One extension of the conjecture that has been used by several researchers is to consider vertex‐weighted digraphs. In this article we introduce a version of the conjecture for arc‐weighted digraphs. We prove the conjecture in the special case of arc‐weighted tournaments, strengthening Fisher's theorem. Our proof does not rely on Fisher's result, and thus can be seen as an alternate proof of said theorem.  相似文献   

8.
In this paper we establish a dichotomy theorem for the complexity of homomorphisms to fixed locally semicomplete digraphs. It is also shown that the same dichotomy holds for list homomorphisms. The polynomial algorithms follow from a different, shorter proof of a result by Gutjahr, Welzl and Woeginger.  相似文献   

9.
We prove that every digraph of circumference l has DAG‐width at most l. This is best possible and solves a recent conjecture from S. Kintali (ArXiv:1401.2662v1 [math.CO], January 2014).1 As a consequence of this result we deduce that the k‐linkage problem is polynomially solvable for every fixed k in the class of digraphs with bounded circumference. This answers a question posed in J. Bang‐Jensen, F. Havet, and A. K. Maia (Theor Comput Sci 562 (2014), 283–303). We also prove that the weak k‐linkage problem (where we ask for arc‐disjoint paths) is polynomially solvable for every fixed k in the class of digraphs with circumference 2 as well as for digraphs with a bounded number of disjoint cycles each of length at least 3. The case of bounded circumference digraphs is still open. Finally, we prove that the minimum spanning strong subdigraph problem is NP‐hard on digraphs of DAG‐width at most 5.  相似文献   

10.
We consider the problem of finding a minimum cost cycle in a digraph with real-valued costs on the vertices. This problem generalizes the problem of finding a longest cycle and hence is NP-hard for general digraphs. We prove that the problem is solvable in polynomial time for extended semicomplete digraphs and for quasi-transitive digraphs, thereby generalizing a number of previous results on these classes. As a byproduct of our method we develop polynomial algorithms for the following problem: Given a quasi-transitive digraph D with real-valued vertex costs, find, for each j=1,2,…,|V(D)|, j disjoint paths P1,P2,…,Pj such that the total cost of these paths is minimum among all collections of j disjoint paths in D.  相似文献   

11.
We give some sufficient conditions for locally semicomplete digraphs to contain a hamiltonian path from a prescribed vertex to another prescribed vertex. As an immediate consequence of these, we obtain that every 4-connected locally semicomplete digraph is strongly hamiltonian-connected. Our results extend those of Thomassen [12] for tournaments. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
In this paper, D=(V(D),A(D)) denotes a loopless directed graph (digraph) with at most one arc from u to v for every pair of vertices u and v of V(D). Given a digraph D, we say that D is 3-quasi-transitive if, whenever uvwz in D, then u and z are adjacent or u=z. In Bang-Jensen (2004) [3], Bang-Jensen introduced 3-quasi-transitive digraphs and claimed that the only strong 3-quasi-transitive digraphs are the strong semicomplete digraphs and strong semicomplete bipartite digraphs. In this paper, we exhibit a family of strong 3-quasi-transitive digraphs distinct from strong semicomplete digraphs and strong semicomplete bipartite digraphs and provide a complete characterization of strong 3-quasi-transitive digraphs.  相似文献   

13.
The k‐linkage problem is as follows: given a digraph and a collection of k terminal pairs such that all these vertices are distinct; decide whether D has a collection of vertex disjoint paths such that is from to for . A digraph is k‐linked if it has a k‐linkage for every choice of 2k distinct vertices and every choice of k pairs as above. The k‐linkage problem is NP‐complete already for [11] and there exists no function such that every ‐strong digraph has a k‐linkage for every choice of 2k distinct vertices of D [17]. Recently, Chudnovsky et al. [9] gave a polynomial algorithm for the k‐linkage problem for any fixed k in (a generalization of) semicomplete multipartite digraphs. In this article, we use their result as well as the classical polynomial algorithm for the case of acyclic digraphs by Fortune et al. [11] to develop polynomial algorithms for the k‐linkage problem in locally semicomplete digraphs and several classes of decomposable digraphs, including quasi‐transitive digraphs and directed cographs. We also prove that the necessary condition of being ‐strong is also sufficient for round‐decomposable digraphs to be k‐linked, obtaining thus a best possible bound that improves a previous one of . Finally we settle a conjecture from [3] by proving that every 5‐strong locally semicomplete digraph is 2‐linked. This bound is also best possible (already for tournaments) [1].  相似文献   

14.
We describe a polynomial algorithm for the Hamiltonian cycle problem for semicomplete multipartite digraphs. The existence of such an algorithm was conjectured in G. Gutin, Paths and cycles in digraphs. Ph. D. thesis, Tel Aviv Univ., 1993. (see also G. Gutin, J Graph Theory 19 (1995) 481–505). © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 111–132, 1998  相似文献   

15.
A (di)graph is supereulerian if it contains a spanning eulerian sub(di)graph. This property is a relaxation of hamiltonicity. Inspired by this analogy with hamiltonian cycles and by similar results in supereulerian graph theory, we analyze a number of sufficient Ore type conditions for a digraph to be supereulerian. Furthermore, we study the following conjecture due to Thomassé and the first author: if the arc‐connectivity of a digraph is not smaller than its independence number, then the digraph is supereulerian. As a support for this conjecture we prove it for digraphs that are semicomplete multipartite or quasitransitive and verify the analogous statement for undirected graphs.  相似文献   

16.
The dicycle transversal number of a digraph D is the minimum size of a dicycle transversal of D, that is a set of vertices of D, whose removal from D makes it acyclic. An arc a of a digraph D with at least one cycle is a transversal arc if a is in every directed cycle of D (making acyclic). In [3] and [4], we completely characterized the complexity of following problem: Given a digraph D, decide if there is a dicycle B in D and a cycle C in its underlying undirected graph such that . It turns out that the problem is polynomially solvable for digraphs with a constantly bounded number of transversal vertices (including cases where ). In the remaining case (allowing arbitrarily many transversal vertices) the problem is NP‐complete. In this article, we classify the complexity of the arc‐analog of this problem, where we ask for a dicycle B and a cycle C that are arc‐disjoint, but not necessarily vertex‐disjoint. We prove that the problem is polynomially solvable for strong digraphs and for digraphs with a constantly bounded number of transversal arcs (but possibly an unbounded number of transversal vertices). In the remaining case (allowing arbitrarily many transversal arcs) the problem is NP‐complete.  相似文献   

17.
We generalize the concept of efficient total domination from graphs to digraphs. An efficiently total dominating set X of a digraph D is a vertex subset such that every vertex of D has exactly one predecessor in X. We study graphs that permit an orientation having such a set and give complexity results and characterizations. Furthermore, we study the computational complexity of the (weighted) efficient total domination problem for several digraph classes. In particular we deal with most of the common generalizations of tournaments, like locally semicomplete and arc-locally semicomplete digraphs.  相似文献   

18.
We obtain a result on configurations in 2-connected digraphs with no two disjoint dicycles. We derive various consequences, for example a short proof of the characterization of the minimal digraphs having no vertex meeting all dicycles and a polynomially bounded algorithm for finding a dicycle through any pair of prescribed arcs in a digraph with no two disjoint dicycles, a problem which is NP-complete for digraphs in general.  相似文献   

19.
A locally semicomplete digraph is a digraph D=(V,A) satisfying the following condi-tion for every vertex x∈V the D[O(x)] and D[I(x)] are semicomplete digraphs. In this paper,we get some properties of cycles and determine the exponent set of primitive locally semicompleted digraphs.  相似文献   

20.
Yao et al. (Discrete Appl Math 99 (2000), 245–249) proved that every strong tournament contains a vertex u such that every out‐arc of u is pancyclic and conjectured that every k‐strong tournament contains k such vertices. At present, it is known that this conjecture is true for k = 1, 2, 3 and not true for k?4. In this article, we obtain a sufficient and necessary condition for a 4‐strong tournament to contain exactly three out‐arc pancyclic vertices, which shows that a 4‐strong tournament contains at least four out‐arc pancyclic vertices except for a given class of tournaments. Furthermore, our proof yields a polynomial algorithm to decide if a 4‐strong tournament has exactly three out‐arc pancyclic vertices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号