首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel fused tetracyclic benzo[4,5]imidazo[1,2‐a]thiopyrano[3,4‐d]pyrimidin‐4(3H)‐one derivatives were synthesized via the reaction of aryl aldehyde, 2H‐thiopyran‐3,5(4H,6H)‐dione, and 1H‐benzo[d]imidazol‐2‐amine in glacial acetic acid. This protocol features mild reaction conditions, high yields and short reaction time.  相似文献   

2.
A new four‐component synthesis of spiro[4H‐indeno[1,2‐b]pyridine‐4,3′‐[3H]indoles] and spiro[acenaphthylene‐1(2H),4′‐[4H‐indeno[1,2‐b]pyridines] by the reaction of indane‐1,3‐dione, 1,3‐dicarbonyl compounds, isatins (=1H‐indole‐2,3‐diones) or acenaphthylene‐1,2‐dione, and AcONH4 in refluxing toluene in the presence of a catalytic amount of pyridine is reported.  相似文献   

3.
Reaction of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione ( 1 ) with two equivalents of some 6‐aminouracils (or 6‐amino‐2‐thiouracil) generates spirocyclic tetrahydrobenzo[if]quinolizines ( 7 ). The one‐pot, three‐component reaction of amido ketone ( 1 ) with 6‐aminouracil (or 6‐amino‐2‐thiouracil) and a cyclic six‐membered 1,3‐diketone produces spirocyclic tetrahydropyrrolo[3,2,1‐ij]quinolinones ( 15 ).  相似文献   

4.
The synthesis of new pyrido[3′,2′:5,6]thiopyrano[3,2‐b]indol‐5(6H)‐ones was accomplished by the Fischer‐indole cyclization of some 2,3‐dihydro‐3‐phenylhydrazonothiopyrano[2,3‐b]pyridin‐4(4H)‐ones, obtained from the 2,3‐dihydro‐3‐hydroxymethylenethiopyrano[2,3‐b]pyridin‐4(4H)‐one, by the Japp‐Klingemann reaction. 6H‐Pyrido[3′,2′:5,6]thiopyrano[4,3‐b]quinolines were obtained by reaction of 2,3‐dihydrothiopyrano‐[2,3‐b]pyridin‐4(4H)‐ones with o‐aminobenzaldehyde or 5‐substituted isatins. The preparation of some derivatives, functionalized with an alkylamino‐substituted side chain, is also described.  相似文献   

5.
A concise and efficient base‐induced synthesis of stair‐shaped, 4‐methylthio‐2‐oxo‐5,6‐dihydro‐2H‐naphtho[1,2‐b]pyran[2,3‐d]oxepine‐3‐carbonitriles ( 3 ) has been delineated by the reaction of 3,4‐dihydronaphtho[1,2‐b]oxepin‐5(2H)‐one ( 1 ) and methyl 2‐cyano‐3,3‐dimethylthioacrylate in DMSO using powdered KOH as a base at room temperature. Amination of 3 has been achieved by reaction with secondary amine in ethanol at reflux temperature to yield 4‐sec‐amino‐2‐oxo‐5,6‐dihydro‐2H‐naphtho[1,2‐b]pyran[2,3‐d]oxepine‐3‐carbonitriles ( 4 ). Reaction of 3 with aryl methyl ketone ( 5 ) in DMSO at room temperature using powdered KOH as a base produced stair‐shaped 5‐aryl‐7,8‐dihydro‐1,4‐dioxa‐2,3‐dioxodinaphtho[1,2‐b,d]oxepine ( 6 ) in good yields. However, reaction of 6‐aryl‐2H‐pyran‐2‐one‐3‐carbonitrile ( 8 ) with 3,4‐dihydronaphtho[1,2‐b]oxepin‐5(2H)‐one ( 1 ) did not give similar product, but in lieu 4‐aryl‐5,6‐dihydronaphtho[1,2‐b]oxepino[4,5‐b]pyran‐2‐ylidene)acetonitrile ( 9 ) was isolated and characterized.  相似文献   

6.
By reaction with sodium ethoxide and as a function of their structures, 2‐[(1‐alkyl(aryl)‐4‐cyano‐6,7‐dihydro‐5H‐cyclopenta[c ]pyridin‐3‐yl)oxy]acetamides 11 gave 1‐amino‐5‐alkyl(aryl)‐7,8‐dihydro‐6H‐cyclopenta[d ]furo[2,3‐b ]pyridine‐2‐carboxamides 10 and/or 1‐alkyl(aryl)‐3‐amino‐6,7‐dihydro‐5H‐cyclopenta[c ]pyridine‐4‐carbonitriles 12 .  相似文献   

7.
A new series of benzo[g]thiazolo[2,3‐b]quinazolin‐4‐ium and benzo[g]benzo[4,5]thiazolo[2,3‐b]quinazolin‐14‐ium hydroxide derivatives have been synthesized by the one‐pot, three‐component reaction of aryl glyoxal monohydrates, 2‐hydroxy‐1,4‐naphthoquinone, and 2‐aminothiazole or 2‐aminobenzothiazole in the presence of triethylamine and p‐toluenesulfonic acid as organocatalysts in H2O/acetone (2:1) at room temperature. This method offers mild reaction conditions, excellent yields, easy workup, and readily accessible starting materials and catalysts.  相似文献   

8.
This paper presents the synthesis of a series of 5,6‐dihydro‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ring system derivatives with a [1,2,3]triazole ring bonded in position 2. The procedure is based on cycloaddition of substituted alkyl azides to the terminal triple bond of 5,6‐dihydro‐2‐ethynyl‐9‐methyl‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ( 4 ). This cycloaddition produced two regioisomers ?5,6‐dihydro‐9‐methyl‐2‐(1‐substituted‐1H‐[1,2,3]triazol‐5‐yl)‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ( 7 ) and 2‐(1‐substituted‐1H‐[1,2,3]triazol‐4‐yl) derivative 8 . The required 2‐ethynyl deriva tive 4 was obtained from the starting 2‐unsubstituted compound 1 by bromination to yield the 2‐bromo derivative 2 , which was converted by Sonogashira reaction to trimethylsilylethyne 3 and finally, the protective trimethylsilyl group was removed by hydrolysis.  相似文献   

9.
Substituted and unsubstituted naphthylamines were transformed into the corresponding triazole derivatives, which were converted to dimethyl 1H‐benz[g]indole‐2,3‐dicarboxylates by photocyclization. The reaction of the diesters with hydrazine hydrate gave the corresponding 8,9‐dihydrobenzo[g]‐pyridazino[4,5‐b]indole‐7,10(11H)‐diones (5) . One of compounds 5 was found to have chemiluminescent activity similar to luminol.  相似文献   

10.
Various 5H‐thiazolo[2,3‐b]quinazoline‐3,5[2H]‐diones (7a,b), 2‐arylidene‐5H‐thiazolo[2,3–b]quin‐azoline‐3,5[2H]‐diones ( 9a‐o ) and 2‐arylidene‐5H‐thiazolo[2,3‐b]benzoquinazoline‐3,5[2H]‐diones ( 12a,b ) have been synthesized via simple and efficient methods.  相似文献   

11.
2‐Methyl‐3H‐indoles 1 cyclize with two equivalents of ethyl malonate 2 to form 4‐hydroxy‐11H‐benzo[b]pyrano[3,2‐f]indolizin‐2,5‐diones 3, whereas 2‐mefhyl‐2,3‐dihydro‐1H‐indoles 9 give under similar conditions regioisomer 8‐hydroxy‐5‐methyl‐4,5‐dihydro‐pyrrolo[3,2,1‐ij]pyrano[3,2‐c]quinolin‐7,10‐diones 10 . The pyrone rings of 3 and 9 can be cleaved either by alkaline hydrolysis to give 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 4 or 5‐acetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo‐[3,2,1‐ij]quinolin‐4‐ones 11 , respectively. Chlorination of 3 and 9 with sulfurylchloride gives under subsequent ring opening 7‐dichloroacetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 5 or 5‐dichloracetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 12 . The dichloroacetyl group of 5 can be reduced with zinc to 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 7. Treatment of the acetyl compounds 4, 7 and 11 with 90% sulfuric acid cleaves the acetyl group and yields 8‐hydroxy‐10H‐pyrido[1,2‐a]‐indol‐6‐ones 6 and 8 , and 6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 13 . Reaction of dichloroacetyl compounds 12 with sodium azide yields 6‐hydroxy‐2‐methyl‐5‐(1H‐tetrazol‐5‐ylcarbonyl)‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 14 via intermediate geminal diazides.  相似文献   

12.
A sequential one‐pot four‐component reaction for the efficient synthesis of novel 2′‐aminospiro[11H‐indeno[1,2‐b]quinoxaline‐11,4′‐[4H]pyran] derivatives 5 in the presence of AcONH4 as a neutral, inexpensive, and dually activating catalyst is described (Scheme 1). The syntheses are achieved by reacting ninhydrin ( 1 ) with benzene‐1,2‐diamines 2 to give indenoquinoxalines, which are trapped in situ by malono derivatives 2 and various α‐methylenecarbonyl compounds 4 through cyclization, providing the multifunctionalized 2′‐aminospiro[11H‐indeno[1,2‐b]quinoxaline‐11,4′‐[4H]pyran] analogs 5 . This chemistry provides an efficient and promising synthetic way of proceeding for the diversity‐oriented construction of the spiro[indenoquinoxalino‐pyran] skeleton.  相似文献   

13.
Pyridine‐2(1H)‐thiones were prepared and reacted with several active halogenated reagents to afford novel thieno[2,3‐b]pyridines in excellent yields. Thieno[2,3‐b]pyridine‐2‐carbohydrazide derivative was prepared by the reaction of either ethyl 2‐((3‐cyanopyridin‐2‐yl)thio)acetate derivative or thieno[2,3‐b]pyridine‐2‐carboxylate derivative with hydrazine hydrate. On the other hand, the reaction of either pyridine‐2(1H)‐thione or ethyl 2‐((pyridin‐2‐yl)thio)acetate derivative with hydrazine hydrate afforded the corresponding 1H‐pyrazolo[3,4‐b]pyridine derivative. Thieno[2,3‐b]pyridine derivatives reacted with several reagents to afford the corresponding pyrimidine‐4(3H)‐ones and [1,2,3]triazin‐4‐(3H)‐one. Moreover, 2‐carbohydrazide derivative reacted with β‐dicarbonyl reagents to give 2‐((3‐methyl‐1H‐pyrazol‐1‐yl)carbonyl)thienopyridines. The structure of the target molecules is elucidated using elemental analyses and spectral data.  相似文献   

14.
In both 2,5‐dimethyl‐6,7‐dihydrobenzo[h]pyrazolo[1,5‐a]quinazoline, C16H15N3, (I), and 2‐tert‐butyl‐5‐methyl‐6,7‐dihydrobenzo[h]pyrazolo[1,5‐a]quinazoline, C19H21N3, (II), which crystallizes with Z′ = 2 in the space group P, the non‐aromatic carbocyclic rings adopt screw‐boat conformations. The molecules of (I) are linked into chains of rings by a combination of C—H...N and C—H...π(arene) hydrogen bonds, while in (II) there are no hydrogen bonds of any kind.  相似文献   

15.
A highly efficient and regioselective synthetic route to 6 H‐isoindolo[2,1‐a]indol‐6‐ones and indeno[1,2‐b]indol‐10(5 H)‐ones through the Pd‐catalyzed cyclocarbonylation of 2‐(2‐bromoaryl)indoles under atmospheric CO pressure has been achieved. Notably, the regioselectivity of the reaction was exclusively dependent on the structural characteristics of the indole substrates. With N‐unsubstituted indoles as the starting materials, the reaction afforded 6H‐isoindolo[2,1‐a]indol‐6‐ones in good‐to‐excellent yields. On the other hand, with N‐substituted indoles as the substrates, the reaction gave indeno[1,2‐b]indol‐10(5 H)‐ones in a highly regioselective manner.  相似文献   

16.
A series of 2‐oxo‐2,5‐dihydro‐1H‐chromeno[4,3‐b]pyridine derivatives were obtained by using a one‐pot three component reaction of 2,2‐disubstituted chroman‐4‐one with aromatic aldehydes and 2‐cyanoacetamide in the presence of sodium hydroxide under solvent‐free conditions. Heating chromenopyridine derivatives with phosphoryl chloride gave the corresponding chloro derivatives. The reaction of the chloro derivatives with hydrazine hydrate afforded dihydrochromeno[4,3‐b]pyrazolo[4,3‐e]pyridines derivatives. Condensation of the dimethyl derivative compound with the aromatic aldehydes gave 8‐Arylideneamino‐6,6‐dimethyl‐10H‐chromeno[4,3‐b]pyrazolo[4,3‐e]pyridine.  相似文献   

17.
The synthesis of new planar derivatives characterized by the presence of a pyridothiopyranopyrazole or pyridothiopyranopyrimidine nucleus, carrying a substituted aryl group, is reported. The novel 1,4‐dihydropyrido[3′,2′:5,6]thiopyrano[4,3‐c]pyrazole derivatives were obtained by condensation of 2,3‐dihydro‐3‐hydroxymethylenethiopyrano[2,3‐b]pyridin‐4(4H)‐ones with appropriate hydrazines. The preparation of 2‐substituted pyrido[3′,2′:5,6]thiopyrano[4,3‐d]pyrimidines was accomplished from the intermediate 2,3‐dihy‐dro‐3‐dimethylaminomethylenethiopyrano[2,3‐b]pyridin‐4(4H)‐ones by reaction with the appropriate binucleophile amidines. The antiproliferative activity of some new products was tested by an in vitro assay on human tumour cell lines (HL‐60 and HeLa), but none of them showed any significant effects in the tests performed. Accordingly, linear flow dichroism measurements indicated their inability to form a molecular complex with DNA.  相似文献   

18.
E‐3‐(N,N‐Dimethylamino)‐1‐(3‐methylthiazolo[3,2‐a]benzimidazol‐2‐yl)prop‐2‐en‐1‐one ( 2 ) was synthesized by the reaction of 1‐(3‐methylthiazolo[3,2‐a]benzimidazol‐2‐yl)ethanone ( 1 ) with dimethylformamide‐dimethylacetal. The reaction of 2 with 5‐amino‐3‐phenyl‐1H‐pyrazole ( 4a ) or 3‐amino‐1,2,4‐(1H)‐triazole ( 4b ) furnished pyrazolo[1,5‐a]pyrimidine and 1,2,4‐triazolo[1,5‐a]pyrimidine derivatives 6a and 6b , while the reaction of enaminone 2 with 6‐aminopyrimidine derivatives 7a,b afforded pyrido[2,3‐d]pyrimidine derivatives 9a,b , respectively. The diazonium salts 11a or 11b coupled with compound 2 to yield the pyrazolo[5,1‐c]‐1,2,4‐triazine and 1,2,4‐triazolo[5,1‐c]‐1,2,4‐triazine derivatives 13a and 13b . Some of the newly synthesized compounds exhibited a moderate effect against some bacterial and fungal species.  相似文献   

19.
The aza‐Wittig reactions of benzaldehyde‐, acetophenone‐ and benzophenone 1‐[(triphenylphosphor‐anylidene)amino]ethylidenehydrazones ( 1 ) with 2,3‐furandiones 6 provide a new route to 4H,8H‐1,2,4‐triazolo[1,5‐c][1,3]oxazepin‐4‐ones 14 or 5,6‐dihydro‐7H,12H‐naphtho[2,1‐f|[1,2,4]triazolo[1,5‐c]‐[1,3]oxazepin‐7‐ones 17 via the thermal reaction of the expected azinoimine vinylogous lactones.  相似文献   

20.
The synthesis of 7,8‐dihydro‐5(6H)‐quinolinone ( 3 ) from commercially available 3‐amino‐2‐cyclohexen‐1‐one ( 1 ) and 3‐(dimethylamino)acrolein ( 4 ) in 23% yield avoids the preparation of propynal ( 2 ). Conversion of 5‐(4‐methylphenylsulfonyl)‐6,7,8,9‐tetrahydro‐5H‐pyrido[3,2‐b]azepine ( 12 ) to 6‐(4‐methylphenylsulfonyl)‐1,4,5,6‐tetrahydropyrazolo[3,4‐d]pyrido[3,2‐b]azepine ( 24 ) is described. Removal of the N‐(4‐methylphenylsulfonyl) group with 40% sulfuric acid in acetic acid gave the tricyclic azepine 26. Application of a similar series of reactions to 5‐(4‐nitrobenzoyl)‐6,7,8,9‐tetrahydro‐5H‐pyrido[3,2‐b]‐azepine ( 13 ) afforded 6‐(4‐nitrobenzoyl)‐1,4,5,6‐tetrahydropyrazolo[3,4‐d]pyrido[3,2‐b]azepine ( 25 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号