共查询到20条相似文献,搜索用时 19 毫秒
1.
Paul Dorbec Tomáš Kaiser Mickael Montassier André Raspaud 《Journal of Graph Theory》2014,75(2):191-202
Let be nonnegative integers. A graph G is ‐colorable if its vertex set can be partitioned into sets such that the graph induced by has maximum degree at most d for , while the graph induced by is an edgeless graph for . In this article, we give two real‐valued functions and such that any graph with maximum average degree at most is ‐colorable, and there exist non‐‐colorable graphs with average degree at most . Both these functions converge (from below) to when d tends to infinity. This implies that allowing a color to be d‐improper (i.e., of type ) even for a large degree d increases the maximum average degree that guarantees the existence of a valid coloring only by 1. Using a color of type (even with a very large degree d) is somehow less powerful than using two colors of type (two stable sets). 相似文献
2.
A strong edge coloring of a graph is a proper edge coloring where the edges at distance at most 2 receive distinct colors. The strong chromatic index χ'_s(G) of a graph G is the minimum number of colors used in a strong edge coloring of G. In an ordering Q of the vertices of G, the back degree of a vertex x of G in Q is the number of vertices adjacent to x, each of which has smaller index than x in Q. Let G be a graph of maximum degree Δ and maximum average degree at most 2 k. Yang and Zhu [J. Graph Theory, 83, 334–339(2016)] presented an algorithm that produces an ordering of the edges of G in which each edge has back degree at most 4 kΔ-2 k in the square of the line graph of G, implying that χ'_s(G) ≤ 4 kΔ-2 k + 1. In this note, we improve the algorithm of Yang and Zhu by introducing a new procedure dealing with local structures. Our algorithm generates an ordering of the edges of G in which each edge has back degree at most(4 k-1)Δ-2 k in the square of the line graph of G, implying that χ'_s(G) ≤(4 k-1)Δ-2 k + 1. 相似文献
3.
A star coloring of an undirected graph G is a proper vertex coloring of G (i.e., no two adjacent vertices are assigned the same color) such that no path on four vertices is 2‐colored. The star chromatic number of G is the smallest integer k for which G admits a star coloring with k colors. In this paper, we prove that every subcubic graph is 6‐star‐colorable. Moreover, the upper bound 6 is best possible, based on the example constructed by Fertin, Raspaud, and Reed (J Graph Theory 47(3) (2004), 140–153). 相似文献
4.
Chen et al., conjectured that for r≥3, the only connected graphs with maximum degree at most r that are not equitably r‐colorable are Kr, r (for odd r) and Kr + 1. If true, this would be a joint strengthening of the Hajnal–Szemerédi theorem and Brooks' theorem. Chen et al., proved that their conjecture holds for r = 3. In this article we study properties of the hypothetical minimum counter‐examples to this conjecture and the structure of “optimal” colorings of such graphs. Using these properties and structure, we show that the Chen–Lih–Wu Conjecture holds for r≤4. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:31–48, 2012 相似文献
5.
A star k-edge-coloring is a proper k-edge-coloring such that every connected bicolored subgraph is a path of length at most 3.The star chromatic indexχ'st(G)of a graph G is the smallest integer k such that G has a star k-edge-coloring.The list star chromatic index ch'st(G)is defined analogously.The star edge coloring problem is known to be NP-complete,and it is even hard to obtain tight upper bound as it is unknown whether the star chromatic index for complete graph is linear or super linear.In this paper,we study,in contrast,the best linear upper bound for sparse graph classes.We show that for everyε>0 there exists a constant c(ε)such that if mad(G)<8/3-ε,then■and the coefficient 3/2 ofΔis the best possible.The proof applies a newly developed coloring extension method by assigning color sets with different sizes. 相似文献
6.
A proper k-edge coloring of a graph G is an assignment of one of k colors to each edge of G such that there are no two edges with the same color incident to a common vertex. Let f(v) denote the sum of colors of the edges incident to v. A k-neighbor sum distinguishing edge coloring of G is a proper k-edge coloring of G such that for each edge uv∈E(G), f(u)≠f(v). By χ'_∑(G), we denote the smallest value k in such a coloring of G. Let mad(G) denote the maximum average degree of a graph G. In this paper, we prove that every normal graph with mad(G) ■ and Δ(G) ≥ 8 admits a(Δ(G) + 2)-neighbor sum distinguishing edge coloring. Our approach is based on the Combinatorial Nullstellensatz and discharging method. 相似文献
7.
A graph G is equitably k‐choosable if for every k‐list assignment L there exists an L‐coloring of G such that every color class has at most vertices. We prove results toward the conjecture that every graph with maximum degree at most r is equitably ‐choosable. In particular, we confirm the conjecture for and show that every graph with maximum degree at most r and at least r3 vertices is equitably ‐choosable. Our proofs yield polynomial algorithms for corresponding equitable list colorings. 相似文献
8.
A coloring of the edges of a graph G is strong if each color class is an induced matching of G. The strong chromatic index of G, denoted by , is the least number of colors in a strong edge coloring of G. Chang and Narayanan (J Graph Theory 73(2) (2013), 119–126) proved recently that for a 2‐degenerate graph G. They also conjectured that for any k‐degenerate graph G there is a linear bound , where c is an absolute constant. This conjecture is confirmed by the following three papers: in (G. Yu, Graphs Combin 31 (2015), 1815–1818), Yu showed that . In (M. Debski, J. Grytczuk, M. Sleszynska‐Nowak, Inf Process Lett 115(2) (2015), 326–330), D?bski, Grytczuk, and ?leszyńska‐Nowak showed that . In (T. Wang, Discrete Math 330(6) (2014), 17–19), Wang proved that . If G is a partial k‐tree, in (M. Debski, J. Grytczuk, M. Sleszynska‐Nowak, Inf Process Lett 115(2) (2015), 326–330), it is proven that . Let be the line graph of a graph G, and let be the square of the line graph . Then . We prove that if a graph G has an orientation with maximum out‐degree k, then has coloring number at most . If G is a k‐tree, then has coloring number at most . As a consequence, a graph with has , and a k‐tree G has . 相似文献
9.
Let G be a planar graph without 4‐cycles and 5‐cycles and with maximum degree . We prove that . For arbitrarily large maximum degree Δ, there exist planar graphs of girth 6 with . Thus, our bound is within 1 of being optimal. Further, our bound comes from coloring greedily in a good order, so the bound immediately extends to online list‐coloring. In addition, we prove bounds for ‐labeling. Specifically, and, more generally, , for positive integers p and q with . Again, these bounds come from a greedy coloring, so they immediately extend to the list‐coloring and online list‐coloring variants of this problem. 相似文献
10.
对于图G=(V(G),E(G)),如果一个映射φ:E(G)→{1,2,…,k},使得G中任意相邻的两边e1,e2满足φ(e1)≠φ(e2),并且G中不含有双色圈,则称φ为G的一个无圈边染色.对于给定的列表分配L={L(e)|e∈E(G)},如果存在图G的一个无圈边染色φ,使得对于任意边e∈E(G),均有φ(e)∈L(e),则称染色φ为G的一个无圈L-边染色.如果对于任意的列表分配L,当对所有的边e∈E(G)满足|L(e)|≥k时,图G均存在无圈L-边染色,那么称G是无圈k-边可选的.使图G无圈k-边可选的最小的正整数k,称为G的无圈列表边色数,用a’l(G)表示.本文证明了对于最大度△≤4的连通图G,如果|E(G)|≤2|V(G)|-1,则a’l(G)≤6,扩展了Basavaraju和Chandran文[J.Graph Theory,2009,61(3):192-209]的结果. 相似文献
11.
A noncomplete graph Γ is said to be (G, 2)‐distance transitive if G is a subgroup of the automorphism group of Γ that is transitive on the vertex set of Γ, and for any vertex u of Γ, the stabilizer is transitive on the sets of vertices at distances 1 and 2 from u. This article investigates the family of (G, 2)‐distance transitive graphs that are not (G, 2)‐arc transitive. Our main result is the classification of such graphs of valency not greater than 5. We also prove several results about (G, 2)‐distance transitive, but not (G, 2)‐arc transitive graphs of girth 4. 相似文献
12.
A GRASP for Coloring Sparse Graphs 总被引:2,自引:0,他引:2
We first present a literature review of heuristics and metaheuristics developed for the problem of coloring graphs. We then present a Greedy Randomized Adaptive Search Procedure (GRASP) for coloring sparse graphs. The procedure is tested on graphs of known chromatic number, as well as random graphs with edge probability 0.1 having from 50 to 500 vertices. Empirical results indicate that the proposed GRASP implementation compares favorably to classical heuristics and implementations of simulated annealing and tabu search. GRASP is also found to be competitive with a genetic algorithm that is considered one of the best currently available for graph coloring. 相似文献
13.
Let be a plane graph with the sets of vertices, edges, and faces V, E, and F, respectively. If one can color all elements in using k colors so that any two adjacent or incident elements receive distinct colors, then G is said to be entirely k‐colorable. Kronk and Mitchem [Discrete Math 5 (1973) 253‐260] conjectured that every plane graph with maximum degree Δ is entirely ‐colorable. This conjecture has now been settled in Wang and Zhu (J Combin Theory Ser B 101 (2011) 490–501), where the authors asked: is every simple plane graph entirely ‐colorable? In this article, we prove that every simple plane graph with is entirely ‐colorable, and conjecture that every simple plane graph, except the tetrahedron, is entirely ‐colorable. 相似文献
14.
Let G be a planar triangle‐free graph and let C be a cycle in G of length at most 8. We characterize all situations where a 3‐coloring of C does not extend to a proper 3‐coloring of the whole graph. 相似文献
15.
Maria Chudnovsky Peter Maceli Juraj Stacho Mingxian Zhong 《Journal of Graph Theory》2017,84(3):262-285
We show that the 4‐coloring problem can be solved in polynomial time for graphs with no induced 5‐cycle C5 and no induced 6‐vertex path P6 相似文献
16.
假设G是一个平面图.如果e1和e2是G中两条相邻边且在关联的面的边界上连续出现,那么称e1和e2面相邻.图G的一个弱边面κ-染色是指存在映射π:E∪F→{1,…,κ},使得任意两个相邻面、两条面相邻的边以及两个相关联的边和面都染不同的颜色.若图G有一个弱边面κ-染色,则称G是弱边面κ-可染的.平面图G的弱边面色数是指G是弱边面κ-可染的正整数κ的最小值,记为χef(G).2016年,Fabrici等人猜想:每个无环且无割边的连通平面图是弱边面5-可染的.本文证明了外平面图满足此猜想,即:外平面图是弱边面5-可染的. 相似文献
17.
A hypergraph is b‐simple if no two distinct edges share more than b vertices. Let m(r, t, g) denote the minimum number of edges in an r‐uniform non‐t‐colorable hypergraph of girth at least g. Erd?s and Lovász proved that A result of Szabó improves the lower bound by a factor of r2?? for sufficiently large r. We improve the lower bound by another factor of r and extend the result to b‐simple hypergraphs. We also get a new lower bound for hypergraphs with a given girth. Our results imply that for fixed b, t, and ? > 0 and sufficiently large r, every r‐uniform b‐simple hypergraph with maximum edge‐degree at most trr1?? is t‐colorable. Some results hold for list coloring, as well. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009 相似文献
18.
Mike J. Grannell Terry S. Griggs Edita Máčajová Martin Škoviera 《Journal of Graph Theory》2013,74(2):163-181
An ‐coloring of a cubic graph G is an edge coloring of G by points of a Steiner triple system such that the colors of any three edges meeting at a vertex form a block of . A Steiner triple system that colors every simple cubic graph is said to be universal. It is known that every nontrivial point‐transitive Steiner triple system that is neither projective nor affine is universal. In this article, we present the following results.
- 相似文献
19.
A graph G is ‐colorable if can be partitioned into two sets and so that the maximum degree of is at most j and of is at most k. While the problem of verifying whether a graph is (0, 0)‐colorable is easy, the similar problem with in place of (0, 0) is NP‐complete for all nonnegative j and k with . Let denote the supremum of all x such that for some constant every graph G with girth g and for every is ‐colorable. It was proved recently that . In a companion paper, we find the exact value . In this article, we show that increasing g from 5 further on does not increase much. Our constructions show that for every g, . We also find exact values of for all g and all . 相似文献
20.
A graph is IC-planar if it admits a drawing in the plane such that each edge is crossed at most once and two crossed edges share no common end-vertex.A proper total-k-coloring of G is called neighbor sum distinguishing if∑_c(u)≠∑_c(v)for each edge uv∈E(G),where∑_c(v)denote the sum of the color of a vertex v and the colors of edges incident with v.The least number k needed for such a total coloring of G,denoted byχ∑"is the neighbor sum distinguishing total chromatic number.Pilsniak and Wozniak conjecturedχ∑"(G)≤Δ(G)+3 for any simple graph with maximum degreeΔ(G).By using the famous Combinatorial Nullstellensatz,we prove that above conjecture holds for any triangle free IC-planar graph with△(G)≥7.Moreover,it holds for any triangle free planar graph withΔ(G)≥6. 相似文献