首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of N,N′‐diarylselenoureas 16 with phenacyl bromide in EtOH under reflux, followed by treatment with NH3, gave N,3‐diaryl‐4‐phenyl‐1,3‐selenazol‐2(3H)‐imines 13 in high yields (Scheme 2). A reaction mechanism via formation of the corresponding Se‐(benzoylmethyl)isoselenoureas 18 and subsequent cyclocondensation is proposed (Scheme 3). The N,N′‐diarylselenoureas 16 were conveniently prepared by the reaction of aryl isoselenocyanates 15 with 4‐substituted anilines. The structures of 13a and 13c were established by X‐ray crystallography.  相似文献   

2.
The selective formation of optically active 2‐acyl‐2‐alkyl‐1,3‐dithiolane 1,1‐dioxides from the corresponding 2‐acyl‐2‐alkyl‐1,3‐dithiolane 1‐oxides, by reaction with OsO4 and NMO in acetone, is reported. These compounds underwent stereoselective reactions at the carbonyl group of the acyl group with organometallic reagents. These reactions were completely regioselective, and no attack at either of the S‐atoms was observed, unlike similar reactions with the corresponding sulfoxides. The nature of the metal atom had a direct effect upon the configuration of the product alcohols.  相似文献   

3.
Cycloadditions of various 1,3‐dipoles to (5Z)‐1‐acyl‐5‐(cyanomethylidene)‐3‐methylimidazolidine‐2,4‐diones 8 or 9 , prepared in 3 steps from hydantoin ( 1 ) (Schemes 1 and 2), were studied. In all cases, reactions proceeded regio‐ and stereoselectively. The type of product depended on the 1,3‐dipole and/or dipolarophile employed as well as on reaction conditions. Thus, with stable dipoles under neutral conditions, spirohydantoin derivatives 12 – 16 were obtained (Scheme 2), while under basic or acidic conditions, pyrazole‐ or isoxazole‐5‐carboxamides 18 and 23 – 26 and carboxylate 27 were formed via aromatization of the newly formed dihydroazole ring, followed by the simultaneous cleavage of the hydantoin ring (Schemes 35).  相似文献   

4.
The reaction of N‐phenylbenzamides 5 with excess SOCl2 under reflux gave N‐phenylbenzimidoyl chlorides 6 , which, on treatment with KSeCN in acetone, yielded imidoyl isoselenocyanates of type 2 . These products, obtained in almost quantitative yield, were stable in the crystalline state. They were transformed into selenourea derivatives 7 by the reaction with NH3, or primary or secondary amines. In acetone at room temperature, 7 reacted with activated bromomethylene compounds such as 2‐bromoacetates, acetamides, and acetonitriles, as well as phenacyl bromides and 4‐cyanobenzyl bromide to to give 1,3‐selenazol‐2‐amines of type 9 (Scheme 2). A reaction mechanism via alkylation of the Se‐atom of 7 , followed by ring closure and elimination of aniline, is most likely (cf. Scheme 7). In the case of selenourea derivatives 7d and 7l with an unsubstituted NH2 group, an alternative ring closure via elimination of H2O led to 1,3‐selenazoles 10a and 10b , respectively (Schemes 4 and 7). On treatment with NaOH, ethyl 1,3‐selenazole‐5‐carboxylates 9l and 9s were saponified and decarboxylated to give the corresponding 5‐unsubstituted 1,3‐selenazoles 12a and 12b (Scheme 6). The molecular structures of selenourea 7f and the 1,3‐selenazoles 9c and 9d have been established by X‐ray crystallography (Figs. 1 and 3).  相似文献   

5.
A series of 2‐acyl‐2H‐1,2,3‐diazaphospholes 3 underwent ready 1,3‐dipolar cycloaddition reactions with 9‐diazofluorenes as the 1,3‐dipole, yielding the respective bicyclic phosphiranes 5 or trimers 7 depending on the reaction conditions employed. The reaction is believed to proceed via the formation of the [3+2]‐cycloaddition adducts followed by elimination of nitrogen from the cyclic azo moiety. In the case of 3c , the phosphatetraazabicyclooctadiene compound 6 has been isolated with no loss of nitrogen. Likewise, the dipolar cycloaddition reaction of diphenyldiazomethane with the >C?P‐ moiety as the 1,3‐dipolarophile gave phosphadiazabicyclohexenes 8 in 32–68% yields.  相似文献   

6.
An efficient two‐step method for the preparation of 3‐(2‐hydroxyethoxy)‐ or 3‐(3‐hydroxypropoxy)isobenzofuran‐1(3H)‐ones 3 has been developed. Thus, the reaction of 1‐(1,3‐dioxol‐2‐yl)‐ or 1‐(1,3‐dioxan‐2‐yl)‐2‐lithiobenzenes, generated in situ by the treatment of 1‐bromo‐2‐(1,3‐dioxol‐2‐yl)‐ or 1‐bromo‐2‐(1,3‐dioxan‐2‐yl)benzenes 1 with BuLi in THF at ?78°, with (Boc)2O afforded tert‐butyl 2‐(1,3‐dioxol‐2‐yl)‐ or 2‐(1,3‐dioxan‐2‐yl)benzoates 2 , which can subsequently undergo facile lactonization on treatment with CF3COOH (TFA) in CH2Cl2 at 0° to give the desired products in reasonable yields.  相似文献   

7.
1,3‐Dipentafluorophenyl‐2,2,2,4,4,4‐hexazido‐1,3‐diaza‐2,4‐diphosphetidine ( 1 ) was synthesized by the reaction of [(C6F5)NPCl3]2 with trimethylsilyl azide in CH2Cl2 and characterized by multinuclear NMR and vibrational spectroscopy. The molecular structure of the compound was determined by single‐crystal X‐ray structure analysis. [(C6F5)NP(N3)3]2 crystallizes in the monoclinic space group P21/n with a = 9.6414(2), b = 7.4170(1) and c = 15.9447(4) Å, β = 94.4374(9)°, with 2 formula units per unit cell. The bond situation in [(C6F5)NP(N3)3]2 has been studied on the basis of NBO analysis. The antisymmetric stretching vibration of the azide groups is discussed. The structural diversity of 1 and 1,3‐diphenyl‐2,2,2,4,4,4‐hexazido‐1,3‐diaza‐2,4‐diphosphetidine in solution and in the solid state depending on the aryl substituent at the nitrogen atom is discussed.  相似文献   

8.
The model morpholine‐1‐carbothioic acid (2‐phenyl‐3H‐quinazolin‐4‐ylidene) amide (1) reacts with phenacyl bromides to afford N4‐(5‐aryl‐1,3‐oxathiol‐2‐yliden)‐2‐phenylquinazolin‐4‐amines (4) or N4‐(4,5‐diphenyl‐1,3‐oxathiol‐2‐yliden)‐2‐phenyl‐4‐aminoquinazoline ( 5 ) by a thermodynamically controlled reversible reaction favoring the enolate intermediate, while the 4‐[4‐aryl‐5‐(2‐phenylquinazolin‐4‐yl)‐1,3‐thiazol‐2‐yl]morpholine ( 8 ) was produced by a kinetically controlled reaction favoring the C‐anion intermediate. 1H nmr, 13C nmr, ir, mass spectroscopy and x‐ray identified compounds ( 4 ), ( 5 ) and ( 8 ).  相似文献   

9.
Unsymmetric cyclic ketenes were generated from N‐acyl‐1,3‐thiazolidine‐2‐carboxylic acids 1a – c by means of Mukaiyama's reagent, and then reacted with imines 2a – c to the new, isomeric spiro‐β‐lactams 3 and 4 via [2+2] cycloaddition (Staudinger ketene–imine reaction; Scheme 1). The reactions were stereoselective (Table 1) and mainly afforded the spiro‐β‐lactams with a relative trans configuration. The spiro‐β‐lactams could be transformed into the corresponding monocyclic β‐lactams by means of thiazolidine ring opening or into substituted thiazolidines via hydrolysis of the β‐lactam ring.  相似文献   

10.
3‐Alkyl/aryl‐3‐ureido‐1H,3H‐quinoline‐2,4‐diones ( 2 ) and 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) react in boiling concentrated HCl to give 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ). The same compounds were prepared by the same procedure from 2‐alkyl/aryl‐3‐ureido‐1H‐indoles ( 4 ), which were obtained from the reaction of 3‐alkyl/aryl‐3‐aminoquinoline‐2,4(1H,3H)‐diones ( 1 ) with 1,3‐diphenylurea or by the transformation of 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) and 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ) in boiling AcOH. The latter were converted into 1,3‐bis[2‐(2‐oxo‐2,3‐dihydro‐1H‐imidazol‐4‐yl)phenyl]ureas ( 5 ) by treatment with triphosgene. All compounds were characterized by 1H‐ and 13C‐NMR and IR spectroscopy, as well as atmospheric pressure chemical‐ionisation mass spectra.  相似文献   

11.
Synthesis and Reactivity of 2‐Bromo‐1,3‐diethyl‐2,3‐dihydro‐1 H ‐1,3,2‐benzodiazaborole Molecular Structure of Bis(1,3‐diethyl‐2,3‐dihydro‐1 H ‐1,3,2‐benzodiazaborol‐2‐yl The reaction of a slurry of calcium hydride in toluene with N,N′‐diethyl‐o‐phenylenediamine ( 1 ) and boron tribromide affords 2‐bromo‐1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol ( 2 ) as a colorless oil. Compound 2 is converted into 2‐cyano‐1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborole ( 3 ) by treatment with silver cyanide in acetonitrile. Reaction of 2 with an equimolar amount of methyllithium affords 1,3‐diethyl‐2‐methyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborole ( 4 ). 1,3,2‐Benzodiazaborole is smoothly reduced by a potassium‐sodium alloy to yield bis(1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol‐2‐yl] ( 7 ), which crystallizes from n‐pentane as colorless needles. Compound 7 is also obtained from the reaction of 2 and LiSnMe3 instead of the expected 2‐trimethylstannyl‐1,3,2‐benzodiazaborole. N,N′‐Bis(1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol‐2‐ yl)‐1,2‐diamino‐ethane ( 6 ) results from the reaction of 2 with Li(en)C≡CH as the only boron containing product. Compounds 2 – 4 , 6 and 7 are characterized by means of elemental analyses and spectroscopy (IR, 1H‐, 11B{1H}‐, 13C{1H}‐NMR, MS). The molecular structure of 7 was elucidated by X‐ray diffraction analysis.  相似文献   

12.
The reaction of 2‐acylamino‐4,5‐dihydro‐3‐furancarbonitriles 1 with sodium iodide in N,N‐dimethyl‐formamide gave the corresponding 1‐acyl‐2‐oxo‐3‐pyrrolidinecarbonitriles 2 in good yields. Successive treatment of 1 with titanium(IV) chloride and potassium carbonate resulted in the formation of N‐acyl‐1‐cyanocyclopropanecarboxamides 4 . The same compounds 2 were also obtained by treatment of 4 with sodium iodide. The starting compounds 1 were synthesized by the reaction of 2‐amino‐4,5‐dihydro‐3‐furan‐carbonitrile with acyl chlorides in pyridine.  相似文献   

13.
The formal 1,3‐cycloaddition of 2‐diazocyclohexane‐1,3‐diones 1a –1 d to acyclic and cyclic enol ethers in the presence of RhII‐catalysts to afford dihydrofurans has been investigated. Reaction with a cis/trans mixture of 1‐ethoxyprop‐1‐ene ( 13a ) yielded the dihydrofuran 14a with a cis/trans ratio of 85 : 15, while that with (Z)‐1‐ethoxy‐3,3,3‐trifluoroprop‐1‐ene ( 13b ) gave the cis‐product 14b exclusively. The stereochemical outcome of the reaction is consistent with a concerted rather than stepwise mechanism for cycloaddition. The asymmetric cycloaddition of 2‐diazocyclohexane‐1,3‐dione ( 1a ) or 2‐diazodimedone (=2‐diazo‐5,5‐dimethylcyclohexane‐1,3‐dione; 1b ) to furan and dihydrofuran was investigated with a representative selection of chiral, nonracemic RhII catalysts, but no significant enantioselectivity was observed, and the reported enantioselective cycloadditions of these diazo compounds could not be reproduced. The absence of enantioselectivity in the cycloadditions of 2‐diazocyclohexane‐1,3‐diones is tentatively explained in terms of the Hammond postulate. The transition state for the cycloaddition occurs early on the reaction coordinate owing to the high reactivity of the intermediate metallocarbene. An early transition state is associated with low selectivity. In contrast, the transition state for transfer of stabilized metallocarbenes occurs later, and the reactions exhibit higher selectivity.  相似文献   

14.
The title compounds were prepared from valine‐derived N‐acylated oxazolidin‐2‐ones, 1 – 3, 7, 9 , by highly diastereoselective (≥ 90%) Mannich reaction (→ 4 – 6 ; Scheme 1) or aldol addition (→ 8 and 10 ; Scheme 2) of the corresponding Ti‐ or B‐enolates as the key step. The superiority of the ‘5,5‐diphenyl‐4‐isopropyl‐1,3‐oxazolidin‐2‐one’ (DIOZ) was demonstrated, once more, in these reactions and in subsequent transformations leading to various t‐Bu‐, Boc‐, Fmoc‐, and Cbz‐protected β2‐homoamino acid derivatives 11 – 23 (Schemes 3–6). The use of ω‐bromo‐acyl‐oxazolidinones 1 – 3 as starting materials turned out to open access to a variety of enantiomerically pure trifunctional and cyclic carboxylic‐acid derivatives.  相似文献   

15.
The reaction of 1,4,5‐trisubstituted 1H‐imidazole‐3‐oxides 1 with 2,2‐bis(trifluoromethyl)ethene‐1,1‐dicarbonitrile ( 7 , BTF) yielded the corresponding 1,3‐dihydro‐2H‐imidazol‐2‐ones 10 and 2‐(1,3‐dihydro‐2H‐imidazol‐2‐ylidene)malononitriles 11 , respectively, depending on the solvent used. In one example, a 1 : 1 complex, 12 , of the 1H‐imidazole 3‐oxide and hexafluoroacetone hydrate was isolated as a second product. The formation of the products is explained by a stepwise 1,3‐dipolar cycloaddition and subsequent fragmentation. The structures of 11d and 12 were established by X‐ray crystallography.  相似文献   

16.
The cycloaddition of organic azides with some conjugated enamines of the 2‐amino‐1,3‐diene, 1‐amino‐1,3‐diene, and 2‐aminobut‐1‐en‐3‐yne type is investigated. The 2‐morpholinobuta‐1,3‐diene 1 undergoes regioselective [3+2] cycloaddition with several electrophilic azides RN3 2 ( a , R=4‐nitrophenyl; b , R=ethoxycarbonyl; c , R=tosyl; d , R=phenyl) to form 5‐alkenyl‐4,5‐dihydro‐5‐morpholino‐1H‐1,2,3‐triazoles 3 which are transformed into 1,5‐disubstituted 1H‐triazoles 4a , d or α,β‐unsaturated carboximidamide 5 (Scheme 1). The cycloaddition reaction of 4‐[(1E,3Z)‐3‐morpholino‐4‐phenylbuta‐1,3‐dienyl]morpholine ( 7 ) with azide 2a occurs at the less‐substituted enamine function and yields the 4‐(1‐morpholino‐2‐phenylethenyl)‐1H‐1,2,3‐triazole 8 (Scheme 2). The 1,3‐dipolar cycloaddition reaction of azides 2a – d with 4‐(1‐methylene‐3‐phenylprop‐2‐ynyl)morpholine ( 9 ) is accelerated at high pressure (ca. 7–10 kbar) and gives 1,5‐disubstituted dihydro‐1H‐triazoles 10a , b and 1‐phenyl‐5‐(phenylethynyl)‐1H‐1,2,3‐triazole ( 11d ) in significantly improved yields (Schemes 3 and 4). The formation of 11d is also facilitated in the presence of an equimolar quantity of tBuOH. The three‐component reaction between enamine 9 , phenyl azide, and phenol affords the 5‐(2‐phenoxy‐2‐phenylethenyl)‐1H‐1,2,3‐triazole 14d .  相似文献   

17.
An efficient route to 2′,3′‐dihydro‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives is described. It involves the reaction of isatine, 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one, and different amines in the presence of CS2 in dry MeOH at reflux (Scheme 1). The alkyl carbamodithioate, which results from the addition of the amine to CS2, is added to the α,β‐unsaturated ketone, resulting from the reaction between 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one and isatine, to produce the 3′‐alkyl‐2′,3′‐dihydro‐4′‐phenyl‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives in excellent yields (Scheme 2). Their structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses.  相似文献   

18.
The reaction of the intermediate ketene N,Se‐hemiacetal 3 , prepared from cyanomethylene derivatives 1 by treatment with Et3N and aryl isoselenocyanates 2 , with bis‐electrophiles 6, 7, 9 , and 11 in DMF affords tetrahydro‐1H‐1,3‐selenazine (=1,3‐selenazinane) derivatives 8, 10 , and 12 in good yield (Scheme 2 and Tables 1–3). Chemical and spectroscopic evidence for the structures of the new compounds are described. The structures of 8d and 12e are established by X‐ray crystallography (Figs. 1 and 2).  相似文献   

19.
The efficient preparation of cis‐3‐(N‐arylamino)‐2‐phenylnaphtho[1,3‐d]‐1,2‐oxaphosphole 2‐oxides 4 and 5 is described by a three‐component reaction involving phenyldichlorophosphine ( 2 ) 1‐hydroxy‐2‐naph‐thaldehyde/1‐hydroxy‐2‐acetonaphthone ( 1 ) and different substituted amines ( 3 ) in anhydrous benzene. The stereo structure, of the products ( 4 and 5 ), as well as the reaction mechanism of the cyclization is discussed. The title compounds ( 4 and 5 ) were fully characterized by NMR and mass spectral data. Their anti microbial activity was evaluated  相似文献   

20.
The reaction of 2,5‐dimethyl‐3,4‐diselenocyanato‐1H‐pyrrole by NaBH4 or NaOCH3 led to tetraselenide 7 in quantitative yield. Treatment of protected tetraselenide 8 with LiAlH4 afforded the aluminum complex intermediate that was converted into pyrrole‐annelated 1,3‐diselenolo‐2‐thione 9 in excellent yield. Similarly, treatment of tetraselenide 8 with LiAlH4 followed by TFA afforded 1,2‐diselenol intermediate that was converted into pyrrole‐annelated 1,3‐diselenolo‐2‐one 10 upon treatment of diimidazole carbonate. J. Heterocyclic Chem., (2011).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号