首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, we postulate the physical criterion for dynamic shear band propagation, and based on this assumption, we implement a numerical algorithm and a computation criterion to simulate initiation and propagation of dynamic adiabatic shear bands (ASBs). The physical criterion is based on the hypothesis that material inside the shear band region undergoes a dynamic recrystallization process during deformation under high temperature and high strain-rate conditions. In addition to providing a new perspective to the physics of the adiabatic shearbanding process and identifying material properties that play a crucial role in defining the material's susceptibility to ASBs, the proposed criterion is instrumental in numerical simulations of the propagation of ASBs when multi-physics models are adopted to describe and predict the complex constitutive behavior of ASBs in ductile materials. Systematic and large scale meshfree simulations have been conducted to test and validate the proposed criterion by examining the formation, propagation, and post-bifurcation behaviors of ASBs in two materials, 4340 steel and OFHC copper. The effects of heat conduction, in particular the length scale introduced by heat conduction, are also studied. The results of the numerical simulations are compared with experimental observations and a close agreement is found for various characteristic features of ASBs, such as the shear band width, speed of propagation, and maximum temperature.  相似文献   

2.
A modified single-pulse loading split Hopkinson torsion bar (SSHTB) is introduced to investigate adiabatic shear banding behavior in SiCp particle reinforced 2024 Al composites in this work. The experimental results showed that formation of adiabatic shear band in the composite with smaller particles is more readily observed than that in the composite with larger particles. To characterize this size-dependent deformation localization behavior of particle reinforced metal matrix composites (MMCp), a strain gradient dependent shear instability analysis was performed. The result demonstrated that high strain gradient provides a deriving force for the formation of adiabatic shear banding in MMCp.  相似文献   

3.
A thermal-mechanical multiresolution continuum theory is applied within a finite element framework to model the initiation and propagation of dynamic shear bands in a steel alloy. The shear instability and subsequent stress collapse, which are responsible for dynamic adiabatic shear band propagation, are captured by including the effects of shear driven microvoid damage in a single constitutive model. The shear band width during propagation is controlled via a combination of thermal conductance and an embedded evolving length scale parameter present in the multiresolution continuum formulation. In particular, as the material reaches a shear instability and begins to soften, the dominant length scale parameter (and hence shear band width) transitions from the alloy grain size to the spacing between micro-voids. Emphasis is placed on modeling stress collapse due to micro-void damage while simultaneously capturing the appropriate scale of inhomogeneous deformation. The goal is to assist in the microscale optimization of alloys which are susceptible to shear band failure.  相似文献   

4.
The numerical simulation of dynamic structural failure by localized shear is quite complex in terms of constitutive models and choice of adequate failure criteria, along with a pronounced mesh-sensitivity. As a result, the existing numerical procedures are usually quite sophisticated, so that their application for design purposes is still limited. This study is based on the implementation of a simple energy-based criterion, which was developed on experimental considerations (Rittel et al., 2006), and uses a minimal number of adjustable parameters. According to this criterion, a material point starts to fail when the total strain energy density reaches a critical value. Thereafter, the strength of the element decreases gradually to zero to mimic the actual structural behavior. The criterion was embedded into commercial finite element software and tested by simulating numerically four typical high-rate experiments. The first is the dynamic torsion test of a tubular specimen. The second concerns the failure mode transition in mode II fracture of an edge crack in plain strain. The last two involve dynamic shear localization under high rate compression of a cylindrical and a shear compression specimen. A very good adequation was found both qualitatively and quantitatively. Qualitatively, in terms of failure path selection, and quantitatively, in terms of local strains, temperatures and critical impact velocity. The proposed approach is enticing from an engineering perspective aimed at predicting the onset and propagation of dynamic shear localization in actual structures.  相似文献   

5.
The formation of shear bands in collapsing thick-walled cylinders (TWC) occurs in a spontaneous manner. The advantage of studying spontaneous, as opposed to forced, shear localization, is that it highlights the inherent susceptibility of the material to adiabatic shear banding without prescribed geometrical constraints. In the case of spontaneous shear localization, the role of microstructure (grain size and grain boundaries) on localization, is still unresolved. Using an electro-magnetic set-up, for the collapse of thick-walled cylinders, we examined the shear band formation and evolution in seven metallic alloys, with a wide range of strength and failure properties. To assess microstructural effects, we conducted systematic tests on copper and Ti6Al4V with different grain sizes. Our results match quite well with previously reported data on much larger specimens, showing the absence of a size effect, on adiabatic shearing. However, the measured shear band spacings, in this study, do not match the predictions of, existing analytical models, indicating that the physics of the problem needs to be better modeled.  相似文献   

6.
绝热剪切带(ASB)的微观组织受试样几何形状的影响。对圆柱、帽形和剪切压缩型三种不同形状的试样进行分离式霍普金森压杆高速冲击试验,研究试样形状对轴承钢绝热剪切带的形成和微观组织的影响。结果表明,在应变率为1 800~3 100 s-1的范围内,材料对应变率的敏感性很低。圆柱试样呈现明显的应变硬化,而帽形试样和剪切压缩型试样(SCS)在不同应变率下分别出现应变硬化和无应变硬化的特征,但流变应力并未因应变硬化而提高。试样形状对ASB的微观形貌和组织有很大影响。圆柱试样上产生了窄且细长的ASB,只发生了应变诱发的晶粒细化,属于形变ASB;帽形试样和SCS则形成大片状的ASB,由等轴晶组成,且发生了体心立方体(BCC)马氏体转变为面心立方体(FCC)奥氏体的相变,属于相变ASB。尤其是SCS中ASB的等轴晶,有非常清晰的晶界,是典型的动态再结晶晶粒。温升计算结果显示,圆柱试样ASB的温升远低于奥氏体相变温度,而帽形试样和SCS的温升高于马氏体的熔点,导致局部熔融。  相似文献   

7.
8.
9.
In a previous paper, Zhou et al. [2006. A numerical methodology for investigating adiabatic shear band formation. J. Mech. Phys. Solids, 54, 904-926] developed a numerical method for analyzing one-dimensional deformation of thermoviscoplastic materials. The method uses a second order algorithm for integration along characteristic lines, and computes the plastic flow after complete localization with high resolution and efficiency. We apply this numerical scheme to analyze localization in a thermoviscoplastic material where multiple shear bands are allowed to form at random locations in a large specimen. As a shear band develops, it unloads neighboring regions and interacts with other bands. Beginning with a random distribution of imperfections, which might be imagined as arising qualitatively from the microstructure, we obtain the average spacing of shear bands through calculations and compare our results with previously existing theoretical estimates. It is found that the spacing between nucleating shear bands follows the perturbation theory due to Wright and Ockendon [1996. A scaling law for the effect of inertia on the formation of adiabatic shear bands. Int. J. Plasticity 12, 927-934], whereas the spacing between mature shear bands is closer to that predicted by the momentum diffusion theory of Grady and Kipp [1987. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids. J. Mech. Phys. Solids 35, 95-119]. Scaling laws for the dependence of band spacing on material parameters differ in many respects from either theory.  相似文献   

10.
The dynamics of adiabatic shear band formation is considered making use of a simplified thermo/visco/plastic flow law. A new numerical solution is used to follow the growth of a perturbation from initiation, through early growth and severe localization, to a slowly varying terminal configuration. Asymptotic analyses predict the early and late stage patterns, but the timing and structure of the abrupt transition to severe localization can only be studied numerically, to date. A characteristic feature of the process is that temperature and plastic strain rate begin to localize immediately, but only slowly, whereas the stress first evolves almost as if there were no perturbation, but then collapses rapidly when severe localization occurs.  相似文献   

11.
提出了高速切削过程中诱发绝热剪切带形成的热塑性剪切波的传播机理,针对锯齿形切屑中热望性区域内的塑性梯度变形特征、动量和能量耗散情况,建立了与切削条件相关的热塑性剪切波的传播模型及剪切带宽度模型.在此基础上,通过淬硬45钢的切削实验并结合改进的Johnson-Cook本构模型分析了热塑性剪切波的传播规律,并将剪切带宽度模型与已提出的DB模型、WR模型和DM模型做了对比,结果表明,由热塑性剪切波传播理论推导的剪切带宽度模型与实验结果较其他模型吻合较好.  相似文献   

12.
Structure of adiabatic shear bands in thermo-viscoplastic materials   总被引:1,自引:0,他引:1  
The shear band structure in a thermo-viscoplastic material has been analyzed under quasi-static conditions during the final stage of the localization process. A closed form expression of the bandwidth, of the size of the heat-affected zone and of the failure time has been obtained for a homogeneous material. The analysis is based on the assumption that the strain-rate distribution is steady beyond a certain strain level. Predictions have been compared with experimental measurements.  相似文献   

13.
The initiation and growth of adiabatic shear bands   总被引:1,自引:0,他引:1  
A simple version of thermo/viscoplasticity theory is used to model the formation of adiabatic shear bands in high rate deformation of solids. The one dimensional shearing deformation of a finite slab is considered. For the constitutive assumptions made in this paper, homogeneous shearing produces a stress/strain response curve that always has a maximum when strain and rate hardening, plastic heating, and thermal softening are taken into account. Shear bands form if a perturbation is added to the homogeneous fields just before peak stress is obtained with these new fields being used as initial conditions. The resulting initial/boundary value problem is solved by the finite element method for one set of material parameters. The shear band grows slowly at first, then accelerates sharply, until finally the plastic strain rate in the center reaches a maximum, followed by a slow decline. Stress drops rapidly throughout the slab, and the central temperature increases rapidly as the peak in strain rate develops.  相似文献   

14.
Summary A probabilistic model of the geometric imperfections of a real structure is proposed, in order to provide a general theory of the stochastic response of structures in presence of small random deviations from the perfect scheme. The main statistical measures of the stochastic response are derived and an application to the study of a particular conservative elastic system is developed.
Sommario Si propone una teoria generale della risposta probabilistica di strutture, in presenza di piccole deviazioni aleatorie dei dati iniziali rispetto allo schema geometrico perfetto. Si deducono le principali proprietà statistiche della risposta della struttura a sollecitazioni esterne deterministiche, e si sviluppa una applicazione riguardante il comportamento aleatorio di un particolare sistema elastico conservativo.

List of symbols element of the sample space of events - kn random variables modelling the structural imperfections - P(o) probability density of random variables - random imperfection of the unloaded structure - u additional displacement of the loaded structure - uo deterministic fundamental solution for the perfect structure - difference between the additional displacement of the loaded structure and the deterministic fundamental solution for the perfect structure - V1=u1 buckling mode of the perfect structure - i intrinsic coordinates of the structure - suitable measure of the magnitude of the random imperfections - scalar geometric variable representing the internal product - random imperfection divided by - single scalar variable denoting the magnitude of the prescribed loads - potential energy of the structure - potential energy of the perfect structure - difference between and - c lowest critical load - s real local maximum for the magnitude of the prescribed loads - c divided by S - E{} expected value of a random variable - 2 variance of a random variable - , random variables defined by Eq. (21)  相似文献   

15.
应用分离式霍普金森压杆对90W-Ni-Mn合金的圆柱体试样进行了动态压缩实验,并对试样的剖面和断面进行了扫描电镜观察,结合试样的真实应力-应变曲线,发现合金在真实应变为约45%时出现明显的绝热剪切现象,随着冲击力的进一步增加,试样发生剪切断裂。可见90W-Ni-Mn合金较传统钨合金更易出现剪切带,具有更高的绝热剪切敏感性。  相似文献   

16.
The present paper briefly reviews analytical studies of the evolution of thermoplastic shear band, i.e. emergence from uniform deformation, post-instability growth and late stage behaviour. The case studied is the simple shear of temperature and rate-dependent materials with heat transfer. Uniform mode exists before a critical state, if no heat flows out of testpiece. Upon reaching the critical state, bifurcation appears as a result of disturbances, which leads to instability and the formation of narrow shear band. Initially, the band, due to temperature disturbance, can shrink with increasing temperature and strain rate owing to unsteady flow. Then heat conduction dominates and causes the shear band to expand. The postmortem appearance of thermo-plastic shear band manifests itself as balance of plastic work rate and heat diffusion. Melting may also take place within the band.  相似文献   

17.
A constitutive relation that accounts for the thermally activated dislocation motion and microstructure interaction is used to study the stability of a homogeneous solution of equations governing the simple shearing deformations of a thermoviscoplastic body. An instability criterion and an upper bound for the growth rate of the infinitesimal deformations superimposed on the homogeneous solution are derived. By adopting Wright and Ockendon's postulate, i.e., the wavelength of the dominant instability mode with the maximum growth rate determines the minimum spacing between shear bands, the shear band spacing is computed. The effect of the initial dislocation density, the nominal strain-rate, and parameters describing the initial thermal activation and the initial microstructure interaction on the shear band spacing are delineated.  相似文献   

18.
921A 钢纯剪切帽状试件绝热剪切变形的数值模拟   总被引:1,自引:0,他引:1  
结合相关实验,通过一系列基于921A 钢纯剪切帽状试件的SHPB数值模拟,研究试件的绝热剪 切行为,分析试件内绝热剪切带(ASB)的产生、发展以及相应的试件温度场分布。研究发现:ASB是通过剪 切区两端高温高应变的不稳定区域的扩展而形成;ASB的扩展速率与加载速率相关;在本文加载速率范围 内,ASB带宽无明显变化,均为约70m,基本与所设计的试件剪切区宽度一致;且对应所有加载速率,ASB 均为形变带。  相似文献   

19.
The mechanical condition of shear band bifurcation   总被引:1,自引:0,他引:1  
Based on the understanding of the role played by the strain-softening effect in the formation of shear band bifurcation, this paper investigates (a) What is the most favourable condition that stimulates the occurrence of shear band? (b) With what model and characterizing parameters can the curved type of band bifurcation be simulated?  相似文献   

20.
边坡稳定的剪切带计算   总被引:2,自引:0,他引:2  
为了解决边坡稳定分析中剪切带有限元网格的依赖性问题,采用梯度塑性理论,从本构关系中引入特征长度入手,建立计算模型。提出了一种8节点缩减积分的梯度塑性单元,并采用梯度塑性理论推导了Drucker-Prager屈服准则的软化模型的有限元格式,在ABAQUS中进行了二次开发,嵌入了本文提出的8节点单元和本构模型,并用ABAQUS软件进行了边坡剪切带的计算。计算结果表明,本文提出的方法消除了经典有限元计算的网格依赖性问题,可以得到与单元剖分无关的稳定的剪切带宽度。本文所提出的方法可适用于其他场合的剪切带计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号