首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
刘龙飞  周强 《爆炸与冲击》2018,38(4):749-758
采用分离式霍普金森杆实验技术,对表面加工后不同粗糙度的6061铝合金薄壁圆柱管进行动态膨胀断裂冻结回收实验,并对薄壁金属圆柱管动态膨胀断裂过程中裂纹萌生、扩展情况以及最终断裂模式等进行了研究。结果表明:相同冲击压力条件下,薄壁金属圆柱管表面粗糙度越大,材料越容易发生膨胀破裂;裂纹萌生于外壁面,由外向内扩展,并且裂纹的扩展主要受裂纹处应力状态的影响;薄壁金属圆柱管的断裂模式由拉伸和剪切断裂机制起主导作用,其断口为拉剪混合型断口。  相似文献   

2.
The interpretation of sheet forming simulations relies on failure criteria to define the limits of metal deformation. The common requirements for these criteria across a broad range of application areas have not yet been satisfied or fully identified, and a single criterion to satisfy all needs has not been developed. Areas where existing criteria appear to be lacking are in the comprehension of the effects of non-proportional loading, general non-planar and triaxial stress loading, and process and material mechanisms that differentiate between necking and fracture. This study was mainly motivated to provide an efficient method for the analysis of necking and fracture limits for sheet metals. In this paper, a model for the necking limit is combined with a model for the fracture limit in the principal stress space by employing a stress-based forming limit curve (FLC) and the maximum shear stress (MSS) criterion. A new metal failure criterion for in-plane isotropic metals is described, based on and validated by a set of critical experiments. This criterion also takes into consideration of the stress distribution through the thickness of the sheet metal to identify the mode of failure, including localized necking prior to fracture, surface cracking, and through-thickness fracture, with or without a preceding neck. The fracture model is also applied to the openability of a food can for AA 5182. The predicted results show very good agreement with the experimentally observed data.  相似文献   

3.
The finite element method is used to numerically simulate localized necking in aluminum alloy tube under internal pressure. The measured electron backscatter diffraction (EBSD) data are directly incorporated into the finite element model and the constitutive response at an integration point is described by the single crystal plasticity theory. The tube is assumed sufficiently long, so that length changes as well as the end effects can be ignored and a plane strain analysis can be performed. Localized necking is assumed to be associated with surface instability, the onset of unstable thinning. It is demonstrated that such a surface instability/necking is the natural outcome of the present approach, and an artificial initial imperfection required by other approaches is not necessary in the present analysis. The effects of spatial grain orientation distribution, material strain rate sensitivity, work hardening, and initial surface topography on necking are discussed. It is found that localized necking depends strongly on both the initial texture and its spatial orientation distribution, while the initial surface topography has a negligible effect on necking.  相似文献   

4.
A combined necking and shear localization analysis is adopted to model the failures of two aluminum sheets, AA5754 and AA6111, under biaxial stretching conditions. The approach is based on the assumption that the reduction of thickness or the necking mode is modeled by a plane stress formulation and the final failure mode of shear localization is modeled by a generalized plane strain formulation. The sheet material is modeled by an elastic-viscoplastic constitutive relation that accounts for the potential surface curvature, material plastic anisotropy, material rate sensitivity, and the softening due to the nucleation, growth, and coalescence of microvoids. Specifically, the necking/shear failure of the aluminum sheets is modeled under uniaxial tension, plane strain tension and equal biaxial tension. The results based on the mechanics model presented in this paper are in agreement with those based on the forming limit diagrams (FLDs) and tensile tests. When the necking mode is suppressed, the failure strains are also determined under plane strain conditions. These failure strains can be used as guidances for estimation of the surface failure strains on the stretching sides of the aluminum sheets under plane strain bending conditions. The estimated surface failure strains are higher than the failure strains of the forming limit diagrams under plane strain stretching conditions. The results are consistent with experimental observations where the surface failure strains of the aluminum sheets increase significantly on the stretching sides of the sheets under bending conditions. The results also indicate that when a considerable amount of necking is observed for a sheet metal under stretching conditions, the surface failure strains on the stretching sides of the sheet metal under bending conditions can be significantly higher.  相似文献   

5.
The deformations in a plane strain tensile test are analyzed numerically, both for a solid characterized by a phenomenological corner theory of plasticity and for a nonlinear elastic solid. As opposed to the simplest flow theory of plasticity with a smooth yield surface, both these material models exhibit shear band instabilities at a realistic level of strain. Initial imperfections are specified in the form of thickness inhomogeneities. A long-wavelength imperfection grows into the well-known necking mode and subsequently, at a sufficiently high local strain level, bands of intense shear deformations develop in the necking region. The location of these shear bands is strongly influenced by the location of small strain concentrations near the surface, induced by various short-wave patterns of initial thickness imperfections. In accord with the non-uniform straining in the neck it is found that the intensity of the localized deformations varies along the bands, and some of the shear bands end inside the material.  相似文献   

6.
Unlike metals, necking in polymers under tension does not lead to further localization of deformation, but to propagation of the neck along the specimen. Finite element analysis is used to numerically study necking and neck propagation in amorphous glassy polymers under plane strain tension during large strain plastic flow. The constitutive model used in the analyses features strain-rate, pressure, and temperature dependent yield, softening immediately after yield and subsequent orientational hardening with further plastic deformation. The latter is associated with distortion of the underlying molecular network structure of the material, and is modelled here by adopting a recently proposed network theory developed for rubber elasticity. Previous studies of necking instabilities have almost invariably employed idealized prismatic specimens; here, we explicitly account for the unavoidable grip sections of test specimens. The effects of initial imperfections, strain softening, orientation hardening, strain-rate as well as of specimen geometry and boundary conditions are discussed. The physical mechanisms for necking and neck propagation, in terms of our constitutive model, are discussed on the basis of a detailed parameter study.  相似文献   

7.
By using a simplified constitutive model of a pointed vertex on subsequent yield loci, namely, such that the equations of deformation-theory of rigid-plastic solids apply for fully-active stress increments, the onset of localized necking under biaxial stretching has been predicted. The predictions agree reasonably well with reported experimental observations. Since localized necking under biaxial stretching of a uniform and homogeneous sheet is impossible when flow theories of plasticity with smooth yield-loci are used, this result supports the hypothesis of vertex-formation on the yield locus under continued plastic flow. The implications of this conclusion with respect to the study of the inception of ductile fracture in solids, viewed as a material instability, may be far-reaching. Still, explanations based on a smooth yield-locus but small initial inhomogeneities cannot be ruled out, and both initial imperfections and yield-vertex effects may contribute in general to localization instabilities.  相似文献   

8.
The effect of superimposed hydrostatic pressure on fracture in round bars under tension is studied numerically using the finite element method based on the Gurson damage model. It is demonstrated that while the superimposed hydrostatic pressure has no noticeable effect on necking, it increases the fracture strain due to the fact that a superimposed pressure delays or completely eliminates the nucleation, growth and coalescence of microvoids or microcracks. The experimentally observed transition of the fracture surface, from the cup-cone mode under atmospheric pressure to a slant structure under high pressure, is numerically reproduced. It is numerically proved that the superimposed hydrostatic pressure has no effect on necking for a damage-free round bar under tension.  相似文献   

9.
金属材料脆性断裂机理的实验研究   总被引:1,自引:0,他引:1  
材料的脆性断裂有许多准则和模型,但对脆断机理和变化规律缺乏合理的描述,给工程应用带来不便。本文对典型脆性材料球墨铸铁、灰铸铁分别进行了拉扭双轴断裂实验和常规拉伸、扭转破坏实验;对韧性金属材料合金钢进行了单轴拉伸颈缩破坏实验。通过上述实验分析了脆性材料和韧性材料发生脆性断裂的机理特征并选择应力三维度作为应力状态参数描述危险点的应力状态,同时考察了脆性材料和韧性材料发生脆性断裂的主导因素。结果表明:韧性材料45#钢和14CrNiMoV合金钢在颈缩断面心部应力三维度值较大时发生脆性拉断,而在颈缩断面边缘处应力三维度值较小时发生剪断;脆性材料球墨铸铁在应力三维度值为0.0~0.33之间变化时均发生脆性断裂;灰铸铁在应力三维度值大于0.0时发生脆性拉断,而在应力三维度值小于0.0时发生剪断。因此可以认为,材料的细观组织结构和危险点应力状态是影响断裂机理及变化规律的主要因素。对于同种材料,随着应力三维度代数值从小向大变化材料的断裂机制由塑性剪切断裂逐渐转变为脆性断裂。本文通过对几种材料的脆性断裂危险点和断裂方向的研究给出了脆断宏观破坏条件。  相似文献   

10.
内爆炸载荷作用下7A55铝合金的动态性能及断裂行为   总被引:1,自引:0,他引:1  
采用圆筒爆炸实验研究了内爆炸载荷作用下7A55铝合金的动态性能,用扫描电镜和光学显微镜 对破裂样品的断口形貌、金相组织等进行了微观分析。结果表明:在本文实验条件下,7A55铝合金能够承受 360MPa的内部爆炸加载;合金的断裂方式为剪切断裂,裂缝与筒壁的径向近似成45角;靠近圆筒内侧组织 中存在剪切变形带、绝热剪切带和裂纹,沿最大剪切应力面向外扩展。  相似文献   

11.
爆炸金属管绝热剪切断裂的细观研究   总被引:5,自引:3,他引:5  
介绍了正火及调质后45号钢、TC4钛合金和钨合金四种金属管在内部高能炸药加载下,破片宏观剪切断口的细观断裂形貌;观察到这四种金属管不同的细观剪切断裂机制。根据金相研究及物理分析表明,金属材料的热导率越低,晶粒越细,则越容易产生绝热剪切,生成相变带。  相似文献   

12.
用损伤理论方法预测铝合金薄板成型极限   总被引:1,自引:0,他引:1  
应用各向异性损伤理论研究2024-T3铝合金薄板的成形极限,通过构造有限元单胞模型预测薄板结构的极限应变.单胞模型由两相材料组成:铝合金基体和金属强化物.基体采用全耦合弹塑性-损伤本构方程描述,而金属强化物则视为弹脆性材料.采用所提出的缩颈准则,得到了双轴拉伸状态下铝合金薄板的极限应变,和实验结果比较两者吻合较好.研究结果揭示有限元单胞模型可以提供铝合金的细观损伤机理信息,当忽略材料的损伤影响,采用金属薄板成型理论的研究结果将过高估计薄板的极限应变.  相似文献   

13.
This paper presents the application of anisotropic damage theory to the study of forming limit diagram of A12024T3 aluminum alloy sheet. In the prediction of limiting strains of the aluminum sheet structure, a finite element cell model has been constructed. The cell model consists of two phases, the aluminum alloy matrix and the intermetallic cluster. The material behavior of the aluminum alloy matrix is described with a fully coupled elasto-plastic damage constitutive equation. The intermetallic cluster is assumed to be elastic and brittle. By varying the stretching ratio, the limiting strains of the sheet under biaxial stretching have been predicted by using the necking criterion proposed. The prediction is in good agreement with the experimental findings. Moreover, the finite element cell model can provide information for understanding the microscopic damage mechanism of the aluminum alloy. Over-estimation of the limit strains may result if the effect of material damage is ignored in the sheet metal forming study.  相似文献   

14.
The initial phase of feather joint development in the vicinity of a turnpike longitudinal shear vertex is analyzed. Experiments with model materials demonstrate that the crack parameters and the distance between the cracks along the shear front in the primary echelon brittle fracture structure linearly depend on the shear radius. A model for the development of the primary echelon structure along the longitudinal shear front is proposed.  相似文献   

15.
The localization of plastic deformation is discussed as “stationary discontinuity” characterized by a vanishing velocity of an acceleration wave derived using the author’s proposed theory of ultrasonic wave velocities propagating in plastically deformed solids. To formulate the proposed theory, the elasto-plastic coupling effect was introduced to consider the elastic stiffness degradation due to the plastic deformation. The driving force of the deformation localization is caused by the yield vertex effect, which introduces a pronounced softening of the shear modulus, and geometrical softening due to double slip caused by lattice rotations. In the present paper, it is examined theoretically and experimentally that the diagonal terms of the introduced elasto-plastic coupling tensor represent a slight hardening followed by a pronounced softening of the elastic modulus induced by the point defect development caused by cross slides among dislocations at multiple slip stages similar to the yield vertex effects. The off-diagonal terms represent geometrical softening induced by lattice rotations such as texture evolution. Then, based on the coincidence of the onset strains between localization and acceleration waves of vanishing velocity, the diagrams of diffuse necking, localized necking and forming limit are analyzed by applying the proposed acoustic tensor, which is based on the generalized Christoffel tensor derived by the author, and solving cut off conditions of the quasi-longitudinal wave to determine the onset strains of deformation localization and localization modes. As a result, diagrams of diffuse necking, localized necking and forming limit were obtained. Moreover, the localization modes were determined and distinguished as the SH-mode, SV-mode, tearing mode and splitting mode.  相似文献   

16.
本文系统地开展了金属/环氧/金属胶结体系的强韧机理及失效行为实验研究,针对铝合金圆棒与铝合金圆棒通过环氧树脂胶层的各种斜截面方向粘结,实验观测了该体系的拉伸变形和失效行为,测量了界面失效载荷对胶层厚度和粘结界面倾斜角的依赖关系;通过引入胶结界面平均正应力、平均剪应力、平均正应变、平均剪应变等概念,可对界面失效强度进行测量,获得界面强度与界面粘结角度以及胶层厚度的关系,进而获得了铝合金/环氧胶层/铝合金体系的强度失效面以及胶结界面的断裂能和胶结体系的能量释放率.上述研究结果为深入认识金属胶结体系的强韧性能和失效机制提供了科学依据,对金属胶结体系的优化设计和性能评判具有重要指导意义.研究结果表明,铝合金/环氧胶层/铝合金体系的拉伸失效总体呈弹脆性破坏特征,失效表现为胶层粘结界面的断裂,失效强度和界面断裂能在胶层厚度为百微米量级时表现出强烈的尺度效应:界面粘结强度随着胶层厚度的减小而显著增大,临界状态的平均正应力和平均剪应力在强度破坏面上近似位于同一圆上,界面断裂能随着胶层厚度的减小而显著减小;与此同时,界面失效强度和界面断裂能也密切依赖于界面粘结角度.  相似文献   

17.
A dynamic finite-difference computer program is used to calculate the quasi-static necking deformation of a round tensile bar to 71 per cent reduction in area. Finite strain and rotation are accounted for. We modelled the behavior of A-533 Grade B Class 1 nuclear-pressure-vessel steel as elastic work-hardening plastic material, using J2-flow theory and a flow curve obtained from a simple tensile test. Up to the time of fracture, computed results of neck radius vs load and elongation, load vs elongation, and neck profile vs neck radius compare favorably with experimental results. We present the macroscopic stress and strain state at fracture and compare these results with those of Bridgman and other calculators. Our calculated neck stress shows monotonically decreasing stress in the radial direction and does not show the sharp stress peaks on the axis or the rounder stress peaks off the axis that these earlier calculations show. We find considerable differences from the Bridgman solution. An iterative computer method is introduced to allow correction of simple tension-test data to a universal flow-stress curve valid for large strain.  相似文献   

18.
The initiation and growth of necks in polymer tubes subjected to rapidly increasing internal pressure is analyzed numerically. Plane strain conditions are assumed to prevail in the axial direction. The polymer is characterized by a finite strain elastic–viscoplastic constitutive relation and the calculations are carried out using a dynamic finite element program. Numerical results for neck development are illustrated and discussed for tubes of various thicknesses. The sensitivity to the wave number of the thickness imperfections is studied with a focus on comparing a long wave length imperfection and a short wave length imperfection. After some thinning down at the necks, the mode of deformation switches to neck propagation along the circumference of the tube. A case is shown in which the necks have propagated along the entire tube wall, so that network locking in the polymer results in high stiffness against further expansion of the tube. The rate dependence of the necking behavior gives noticeable differences in neck development for slow loading versus fast loading.  相似文献   

19.
Localization phenomena in thin sheets subjected to plane stress tension are investigated. The sheet is modelled as a polycrystalline aggregate, and a finite element analysis based on rate-dependent crystal plasticity is developed to simulate large strain behaviour. Accordingly, each material point in the specimen is considered to be a polycrystalline aggregate consisting of a large number of FCC grains. The Taylor model of crystal plasticity theory is assumed. This analysis accounts for initial textures as well as texture evolution during large plastic deformations. The numerical analysis incorporates certain parallel computing features. Simulations have been carried out for an aluminum sheet alloy, and the effects of various parameters on the formation and prediction of localized deformation (in the form of necking and/or in-plane shear bands) are examined.  相似文献   

20.
Although there is now a considerable volume of high-strain (<105 cycles) fatigue data for uniaxial tension-compression and simple-bending conditions, relatively little information is available regarding the effects of stress and strain biaxiality. A method which has been used to study the effects of biaxiality on longlife fatigue strength is to subject thin-walled tubes to repeated internal pressure and an end load which is in phase with, and a linear function of, the pressure. The object of the present research was to use this method to study the influence of stress biaxiality on the high-strain fatigue behavior of a high strength, aluminum-4% copper alloy at room temperature. From a continuum-mechanics point of view, this material is completely elastic after the first few load cycles. Cylinder results for hoop to axial stress ratios of 2:1, 1:1, 1:2 and 2: ?1 suggest that fatigue failure of this material in the life range 103 to 105 cycles is primarily dependent on the maximum range of tensile stress. This conclusion and a study of fracture surfaces led to the use of linear-elastic fracture mechanics to interpret the fatigue and brittle fracture behavior of these cylinders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号