首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposed an image algorithm based on a cascaded chaotic system to improve the performance of the encryption algorithm. Firstly, this paper proposed an improved cascaded two-dimensional map 2D-Cosine-Logistic-Sine map (2D-CLSM). Cascade chaotic system offers good advantages in terms of key space, complexity and sensitivity to initial conditions. By using the control parameters and initial values associated with the plaintext, the system generates two chaotic sequences associated with the plaintext image. Then, an S-box construction method is proposed, and an encryption method is designed based on the S-box. Encryption is divided into bit-level encryption and pixel-level encryption, and a diffusion method was devised to improve security and efficiency in bit-level encryption. Performance analysis shows that the encryption algorithm has good security and is easily resistant to various attacks.  相似文献   

2.
An image encryption method using a chaotic 3D cat map is presented in this paper. The process of the proposed algorithm contains the simultaneous operations of pixels’ locations permutation and pixels’ values substitution at every iterative step of the chaotic map, which making the forward and reverse encryption needs only one traverse of the image pixels. Moreover, a perturbation is introduced to eliminate the undesirable finite precision effect of computer in realization. The main advantages of such a secure method are the simplicity and efficiency. Both simulations and analysis show the proposed algorithm can produce a large key space and resist the common existing cipher attacks. These good cryptographic properties make it suitable for image applications.  相似文献   

3.
To address the problem of a poor security image encryption algorithm based on a single chaotic map, this paper proposes a cascade modulation chaotic system (CMCS) that can generate multiple chaotic maps. On this basis, a multi-image encryption algorithm with block-scrambling-diffusion is proposed using CMCS. The algorithm makes full use of the features of CMCS to achieve the effect of one encryption at a time for images. Firstly, the key-value associated with the plaintexts is generated using a secure hash algorithm-512 (SHA-512) operation and random sequence, and the three images are fully confused by the double scrambling mechanism. Secondly, the scrambled image is converted into a bit-level matrix, and the pixel values are evenly distributed using the bit-group diffusion. Finally, the non-sequence diffusion of hexadecimal addition and subtraction rules is used to improve the security of the encryption algorithm. Experimental results demonstrate that the encryption algorithm proposed in this paper has a good encryption effect and can resist various attacks.  相似文献   

4.
A chaotic system refers to a deterministic system with seemingly random irregular motion, and its behavior is uncertain, unrepeatable, and unpredictable. In recent years, researchers have proposed various image encryption schemes based on a single low-dimensional or high-dimensional chaotic system, but many algorithms have problems such as low security. Therefore, designing a good chaotic system and encryption scheme is very important for encryption algorithms. This paper constructs a new double chaotic system based on tent mapping and logistic mapping. In order to verify the practicability and feasibility of the new chaotic system, a displacement image encryption algorithm based on the new chaotic system was subsequently proposed. This paper proposes a displacement image encryption algorithm based on the new chaotic system. The algorithm uses an improved new nonlinear feedback function to generate two random sequences, one of which is used to generate the index sequence, the other is used to generate the encryption matrix, and the index sequence is used to control the generation of the encryption matrix required for encryption. Then, the encryption matrix and the scrambling matrix are XORed to obtain the first encryption image. Finally, a bit-shift encryption method is adopted to prevent the harm caused by key leakage and to improve the security of the algorithm. Numerical experiments show that the key space of the algorithm is not only large, but also the key sensitivity is relatively high, and it has good resistance to various attacks. The analysis shows that this algorithm has certain competitive advantages compared with other encryption algorithms.  相似文献   

5.
We propose an image encryption scheme using chaotic phase masks and cascaded Fresnel transform holography based on a constrained optimization algorithm. In the proposed encryption scheme, the chaotic phase masks are generated by Henon map, and the initial conditions and parameters of Henon map serve as the main secret keys during the encryption and decryption process. With the help of multiple chaotic phase masks, the original image can be encrypted into the form of a hologram. The constrained optimization algorithm makes it possible to retrieve the original image from only single frame hologram. The use of chaotic phase masks makes the key management and transmission become very convenient. In addition, the geometric parameters of optical system serve as the additional keys, which can improve the security level of the proposed scheme. Comprehensive security analysis performed on the proposed encryption scheme demonstrates that the scheme has high resistance against various potential attacks. Moreover, the proposed encryption scheme can be used to encrypt video information. And simulations performed on a video in AVI format have also verified the feasibility of the scheme for video encryption.  相似文献   

6.
Many image encryption schemes based on compressive sensing have poor reconstructed image quality when the compression ratio is low, as well as difficulty in hardware implementation. To address these problems, we propose an image encryption algorithm based on the mixed chaotic Bernoulli measurement matrix block compressive sensing. A new chaotic measurement matrix was designed using the Chebyshev map and logistic map; the image was compressed in blocks to obtain the measurement values. Still, using the Chebyshev map and logistic map to generate encrypted sequences, the measurement values were encrypted by no repetitive scrambling as well as a two-way diffusion algorithm based on GF(257) for the measurement value matrix. The security of the encryption system was further improved by generating the Secure Hash Algorithm-256 of the original image to calculate the initial values of the chaotic mappings for the encryption process. The scheme uses two one-dimensional maps and is easier to implement in hardware. Simulation and performance analysis showed that the proposed image compression–encryption scheme can improve the peak signal-to-noise ratio of the reconstructed image with a low compression ratio and has good encryption against various attacks.  相似文献   

7.
Chaos is considered as a natural candidate for encryption systems owing to its sensitivity to initial values and unpredictability of its orbit. However, some encryption schemes based on low-dimensional chaotic systems exhibit various security defects due to their relatively simple dynamic characteristics. In order to enhance the dynamic behaviors of chaotic maps, a novel 3D infinite collapse map (3D-ICM) is proposed, and the performance of the chaotic system is analyzed from three aspects: a phase diagram, the Lyapunov exponent, and Sample Entropy. The results show that the chaotic system has complex chaotic behavior and high complexity. Furthermore, an image encryption scheme based on 3D-ICM is presented, whose security analysis indicates that the proposed image encryption scheme can resist violent attacks, correlation analysis, and differential attacks, so it has a higher security level.  相似文献   

8.
孙杰 《光学技术》2017,43(3):279-283
为了扩展双图像光学加密算法的密钥空间,克服双随机相位加密系统中随机相位掩模作为密钥难于存储、传输和重构的问题,突破传统图像加密的研究思路,提出了一种基于多混沌系统的双图像加密算法,构造了光学加密系统。系统增加混沌系统参数作为密钥,利用混沌加密密钥空间大和图像置乱隐藏性好的特点,构建基于Logistic混沌映射的图像置乱算法,利用Kent混沌映射生成的伪随机序列构造出一对随机相位掩模,分别放置在分数傅里叶变换光学装置的两端,图像经加密系统变换后得到密文。数值仿真结果表明,算法的密钥敏感性极高,能够有效地对抗统计攻击,具有较高的安全性。  相似文献   

9.
Information security has become a focal topic in the information and digital age. How to realize secure transmission and the secure storage of image data is a major research focus of information security. Aiming at this hot topic, in order to improve the security of image data transmission, this paper proposes an image encryption algorithm based on improved Arnold transform and a chaotic pulse-coupled neural network. Firstly, the oscillatory reset voltage is introduced into the uncoupled impulse neural network, which makes the uncoupled impulse neural network exhibit chaotic characteristics. The chaotic sequence is generated by multiple iterations of the chaotic pulse-coupled neural network, and then the image is pre-encrypted by XOR operation with the generated chaotic sequence. Secondly, using the improved Arnold transform, the pre-encrypted image is scrambled to further improve the scrambling degree and encryption effect of the pre-encrypted image so as to obtain the final ciphertext image. Finally, the security analysis and experimental simulation of the encrypted image are carried out. The results of quantitative evaluation show that the proposed algorithm has a better encryption effect than the partial encryption algorithm. The algorithm is highly sensitive to keys and plaintexts, has a large key space, and can effectively resist differential attacks and attacks such as noise and clipping.  相似文献   

10.
Digital image encryption with chaotic map lattices   总被引:1,自引:0,他引:1       下载免费PDF全文
孙福艳  吕宗旺 《中国物理 B》2011,20(4):40506-040506
This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process,eight different types of operations are used to encrypt the pixels of an image and one of them will be used for particular pixels decided by the outcome of the chaotic map lattices. To make the cipher more robust against any attacks,the secret key is modified after encrypting each block of sixteen pixels of the image. The experimental results and security analysis show that the proposed image encryption scheme achieves high security and efficiency.  相似文献   

11.
Recently, various encryption techniques based on chaos have been proposed. However, most existing chaotic encryption schemes still suffer from fundamental problems such as small key space, weak security function and slow performance speed. This paper introduces an efficient encryption scheme for still visual data that overcome these disadvantages. The proposed scheme is based on hybrid Linear Feedback Shift Register (LFSR) and chaotic systems in hybrid domains. The core idea is to scramble the pixel positions based on 2D chaotic systems in frequency domain. Then, the diffusion is done on the scrambled image based on cryptographic primitive operations and the incorporation of LFSR and chaotic systems as round keys. The hybrid compound of LFSR, chaotic system and cryptographic primitive operations strengthen the encryption performance and enlarge the key space required to resist the brute force attacks. Results of statistical and differential analysis show that the proposed algorithm has high security for secure digital images. Furthermore, it has key sensitivity together with a large key space and is very fast compared to other competitive algorithms.  相似文献   

12.
Digital images can be large in size and contain sensitive information that needs protection. Compression using compressed sensing performs well, but the measurement matrix directly affects the signal compression and reconstruction performance. The good cryptographic characteristics of chaotic systems mean that using one to construct the measurement matrix has obvious advantages. However, existing low-dimensional chaotic systems have low complexity and generate sequences with poor randomness. Hence, a new six-dimensional non-degenerate discrete hyperchaotic system with six positive Lyapunov exponents is proposed in this paper. Using this chaotic system to design the measurement matrix can improve the performance of image compression and reconstruction. Because image encryption using compressed sensing cannot resist known- and chosen-plaintext attacks, the chaotic system proposed in this paper is introduced into the compressed sensing encryption framework. A scrambling algorithm and two-way diffusion algorithm for the plaintext are used to encrypt the measured value matrix. The security of the encryption system is further improved by generating the SHA-256 value of the original image to calculate the initial conditions of the chaotic map. A simulation and performance analysis shows that the proposed image compression-encryption scheme has high compression and reconstruction performance and the ability to resist known- and chosen-plaintext attacks.  相似文献   

13.
A hybrid domain image encryption algorithm is developed by integrating with improved Henon map, integer wavelet transform (IWT), bit-plane decomposition, and deoxyribonucleic acid (DNA) sequence operations. First, we improve the classical two-dimensional Henon map. The improved Henon map is called 2D-ICHM, and its chaotic performance is analyzed. Compared with some existing chaotic maps, 2D-ICHM has larger parameter space, continuous chaotic range, and more complex dynamic behavior. Second, an image encryption structure based on diffusion–scrambling–diffusion and spatial domain–frequency domain–spatial domain is proposed, which we call the double sandwich structure. In the encryption process, the diffusion and scrambling operations are performed in the spatial and frequency domains, respectively. In addition, initial values and system parameters of the 2D-ICHM are obtained by the secure hash algorithm-512 (SHA-512) hash value of the plain image and the given parameters. Consequently, the proposed algorithm is highly sensitive to plain images. Finally, simulation experiments and security analysis show that the proposed algorithm has a high level of security and strong robustness to various cryptanalytic attacks.  相似文献   

14.
An image encryption algorithm based on chaotic system and deoxyribonucleic acid (DNA) sequence operations is proposed in this paper. First, the plain image is encoded into a DNA matrix, and then a new wave-based permutation scheme is performed on it. The chaotic sequences produced by 2D Logistic chaotic map are employed for row circular permutation (RCP) and column circular permutation (CCP). Initial values and parameters of the chaotic system are calculated by the SHA 256 hash of the plain image and the given values. Then, a row-by-row image diffusion method at DNA level is applied. A key matrix generated from the chaotic map is used to fuse the confused DNA matrix; also the initial values and system parameters of the chaotic system are renewed by the hamming distance of the plain image. Finally, after decoding the diffused DNA matrix, we obtain the cipher image. The DNA encoding/decoding rules of the plain image and the key matrix are determined by the plain image. Experimental results and security analyses both confirm that the proposed algorithm has not only an excellent encryption result but also resists various typical attacks.  相似文献   

15.
Recently, a number of chaos-based image encryption algorithms that use low-dimensional chaotic map and permutation-diffusion architecture have been proposed. However, low-dimensional chaotic map is less safe than high-dimensional chaotic system. And permutation process is independent of plaintext and diffusion process. Therefore, they cannot resist efficiently the chosen-plaintext attack and chosen-ciphertext attack. In this paper, we propose a hyper-chaos-based image encryption algorithm. The algorithm adopts a 5-D multi-wing hyper-chaotic system, and the key stream generated by hyper-chaotic system is related to the original image. Then, pixel-level permutation and bit-level permutation are employed to strengthen security of the cryptosystem. Finally, a diffusion operation is employed to change pixels. Theoretical analysis and numerical simulations demonstrate that the proposed algorithm is secure and reliable for image encryption.  相似文献   

16.
A single-channel color image encryption is proposed based on a phase retrieve algorithm and a two-coupled logistic map. Firstly, a gray scale image is constituted with three channels of the color image, and then permuted by a sequence of chaotic pairs generated by the two-coupled logistic map. Secondly, the permutation image is decomposed into three new components, where each component is encoded into a phase-only function in the fractional Fourier domain with a phase retrieve algorithm that is proposed based on the iterative fractional Fourier transform. Finally, an interim image is formed by the combination of these phase-only functions and encrypted into the final gray scale ciphertext with stationary white noise distribution by using chaotic diffusion, which has camouflage property to some extent. In the process of encryption and decryption, chaotic permutation and diffusion makes the resultant image nonlinear and disorder both in spatial domain and frequency domain, and the proposed phase iterative algorithm has faster convergent speed. Additionally, the encryption scheme enlarges the key space of the cryptosystem. Simulation results and security analysis verify the feasibility and effectiveness of this method.  相似文献   

17.
Chaotic-maps-based image encryption methods have been a topic of research interest for a decade. However, most of the proposed methods suffer from slow encryption time or compromise on the security of the encryption to achieve faster encryption. This paper proposes a lightweight, secure, and efficient image encryption algorithm based on logistic map, permutations, and AES S-box. In the proposed algorithm, SHA-2 based on the plaintext image, a pre-shared key, and an initialization vector (IV) are used to generate the initial parameters for the logistic map. The logistic map chaotically generates random numbers, which are then used for the permutations and substitutions. The security, quality, and efficiency of the proposed algorithm are tested and analyzed using a number of metrics, such as correlation coefficient, chi-square, entropy, mean square error, mean absolute error, peak signal-to-noise ratio, maximum deviation, irregular deviation, deviation from uniform histogram, number of pixel change rate, unified average changing intensity, resistance to noise and data loss attacks, homogeneity, contrast, energy, and key space and key sensitivity analysis. Experimental results reveal that the proposed algorithm is up to 15.33× faster compared to other contemporary encryption methods.  相似文献   

18.
王兴元  滕琳 《中国物理 B》2012,21(2):20504-020504
In this paper, we propose a new one-time one-key encryption algorithm based on the ergodicity of a skew tent chaotic map. We divide the chaotic trajectory into sub-intervals and map them to integers, and use this scheme to encrypt plaintext and obtain ciphertext. In this algorithm, the plaintext information in the key is used, so different plaintexts or different total numbers of plaintext letters will encrypt different ciphertexts. Simulation results show that the performance and the security of the proposed encryption algorithm can encrypt plaintext effectively and resist various typical attacks.  相似文献   

19.
A novel double-image encryption algorithm is proposed, based on discrete fractional random transform and chaotic maps. The random matrices used in the discrete fractional random transform are generated by using a chaotic map. One of the two original images is scrambled by using another chaotic map, and then encoded into the phase of a complex matrix with the other original image as its amplitude. Then this complex matrix is encrypted by the discrete fractional random transform. By applying the correct keys which consist of initial values, control parameters, and truncated positions of the chaotic maps, and fractional orders, the two original images can be recovered without cross-talk. Numerical simulation has been performed to test the validity and the security of the proposed encryption algorithm. Encrypting two images together by this algorithm creates only one encrypted image, whereas other single-image encryption methods create two encrypted images. Furthermore, this algorithm requires neither the use of phase keys nor the use of matrix keys. In this sense, this algorithm can raise the efficiency when encrypting, storing or transmitting.  相似文献   

20.
Problems such as insufficient key space, lack of a one-time pad, and a simple encryption structure may emerge in existing encryption schemes. To solve these problems, and keep sensitive information safe, this paper proposes a plaintext-related color image encryption scheme. Firstly, a new five-dimensional hyperchaotic system is constructed in this paper, and its performance is analyzed. Secondly, this paper applies the Hopfield chaotic neural network together with the novel hyperchaotic system to propose a new encryption algorithm. The plaintext-related keys are generated by image chunking. The pseudo-random sequences iterated by the aforementioned systems are used as key streams. Therefore, the proposed pixel-level scrambling can be completed. Then the chaotic sequences are utilized to dynamically select the rules of DNA operations to complete the diffusion encryption. This paper also presents a series of security analyses of the proposed encryption scheme and compares it with other schemes to evaluate its performance. The results show that the key streams generated by the constructed hyperchaotic system and the Hopfield chaotic neural network improve the key space. The proposed encryption scheme provides a satisfying visual hiding result. Furthermore, it is resistant to a series of attacks and the problem of structural degradation caused by the simplicity of the encryption system’s structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号