首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effect of metal ions on free radical properties of natural melanin produced by soil fungiCladosporium cladosporioides was studied. The electron paramagnetic resonance (EPR) spectrum of the studied melanin consists mainly of a single line of eumelanin, and only a very weak signal of pheomelanin was observed. o-Semiquinone free radicals form paramagnetic centers in melanin. Diamagnetic Zn2+ ions produce an increase in the free radical concentration in melanin. Quenching of melanin EPR lines was obtained for melanin and paramagnetic Cu2+ ion complexes. Slow spin-lattice relaxation processes are characteristic for the free radicals in melanin samples and fast spin-lattice relaxation was observed for Cu2+ ions. The EPR lines of copper ions saturate at higher microwave powers than the EPR lines of melanin.  相似文献   

2.
In this paper, we present the experimental results on the study of mechanical properties of polymer-based nanocomposite materials with carbon nanotube or ultradisperse diamond inclusions. Tests are performed by nanoindentation methods. The results obtained for nanocomposites and a polymer used as a matrix in nanocomposites are compared.  相似文献   

3.
《Composite Interfaces》2013,20(2-3):297-317
In this paper an attempt was made to define microstructural properties of carbon fiber/PP composites, with respect to fiber surface chemistry and morphology. In order to define the effects of the fiber surface sizings and morphology on the polymer microstructure, the interphase and mechanical properties of the composites, carbon fibers with similar, but not identical surface chemistry (CH and CT) were used. Characterization was performed by several techniques: SEM, POM, reflection microscopy, DSC, FTIR, XPS, contact angle measurements. For microstructural analysis, the geometrical method, method of intercept and DIF method were used. It was found that both carbon fibers have a strong influence on the nucleation mechanism and crystallization as well as on the microstructural parameters in the model and macro composites. Nucleation efficiency of the fibers has been confirmed by the nucleation parameter Q, measured by Muchova–Lednicky method and by the interfacial energy parameters. Microstructural analysis based on the photographs obtained by POM, SEM and reflection microscopy has shown that in the CH/PP model and macrocomposites the sieve-grain network was formed, which indicates better mechanical properties. The results obtained for the macromechanical properties of PP composites reinforced with CH and CT have confirmed the prediction based on micostructural analysis.  相似文献   

4.
为揭示8-羟基喹啉树脂对Cu~(2+)高选择性吸附的本质原因,采用密度泛函B3LYP方法系统研究8-羟基喹啉与Cu~(2+)配位作用方式与作用特点.能量计算结果表明去质子的8-羟基喹啉阴离子与Cu~(2+)作用最强,相互作用能最高,其次是反式8-羟基喹啉,而顺式配体作用最弱;同时,金属离子与一个配体配位所得产物LCu~(2+)与配体配位能力显著降低.轨道分析表明金属离子主要以3d轨道与配体的2p轨道重叠,且以σ成键作用为主.静电势计算结果显示去质子的8-羟基喹啉阴离子静电势最负,导致配位能力明显高于中性配体;且金属离子与配体配位后,正的静电势显著降低,由此导致与配体配位能力减弱.  相似文献   

5.
《Solid State Ionics》1988,26(1):1-4
The effects of the surface properties of alumina upon the conductivity enhancement in the LiIAl2O3 composite were studied by means of a thickness of the interfacial layer. Neither the surface area measured by the BET method nor the particle size showed any correlation with the thickness. Heat-treatment of alumina resulted in a slight decrease of the thickness. Among the surface properties changed with this treatment, the amount of basic active sites, especially the -OH group, is the most plausible species to have an effect on the conductivity enhancement.  相似文献   

6.
7.
The magnetostriction of a number of copper-containing ferrite spinels was measured. In all the ferrites studied, below room temperature, |λ| was found to decrease with temperature. It is conjectured that this decrease in |λ| originates from an increase in the degree of covalency among the Cu2+-O2? ions, which, in turn, reduces their spin-orbit coupling.  相似文献   

8.
The Hashin-Shtrikman and Walpole bounds for the transport properties and bulk modulus of multicomponent composite materials are shown to be attained in a wide range of cases. Thus in these cases the bounds are the best possible bounds that can be given in terms of the properties of the components and the volume fractions. For three-component materials new bounds are conjectured. The conjectured bounds are presumed to apply in the cases where the Hashin-Shtrikman and Walpole bounds are not attained.  相似文献   

9.
Surface treatment of TiO2 was done by immersing filler particles in 2 and 4 % sulphuric acid (H2SO4) aqueous solutions. Untreated, 2 and 4 % H2SO4-treated TiO2 were referred as neutral, weakly acidic, and acidic TiO2, respectively. Composite polymer electrolytes (CPEs) based on hexanoyl chitosan–polystyrene blend were prepared by using lithium trifluromethanesulfonate (LiCF3SO3) as the doping salt and three different types of the TiO2 fillers. X-ray diffraction (XRD) results showed that the addition of TiO2 reduced the crystalline fraction of the electrolytes. The conductivity performance of the CPEs varied in the order: acidic?<?weakly acidic?<?TiO2 free?<?neutral TiO2. A model based on the interaction between Lewis acid–base sites of TiO2 with ionic species of LiCF3SO3 has been proposed to understand the conductivity mechanism brought about by the different types of fillers. The conductivity enhancement by neutral TiO2 is attributed to the increase in the mobility of Li+ cations. Acidic TiO2 decreased the conductivity by decreasing the anionic contribution. The conductivity variation with filler content was discussed on the basis of the number of free ions.  相似文献   

10.
In this work, Bi-doped magnesium silicide compounds were prepared by applying a combination of both, short-time ball milling and heating treatment. The effect of Mg excess was also studied, aiming towards further improvement in thermoelectric properties. The structural modifications of all materials were followed by Powder X-ray diffraction and Scanning Electron Microscopy. Highly dense pellets of Mg2Si1−xBix (0≤x≤0.035) and Mg2+δSi0.975Bi0.025 (δ=0.04, 0.06 and 0.12) were fabricated via hot pressing and studied in terms of Seebeck coefficient, electrical and thermal conductivities and free carrier concentration. Their thermoelectric performance, at high temperature range, is presented and the maximum value of the dimensionless-figure-of-merit (ZT) is found to be 0.68 at 810 K, for Mg2Si0.97Bi0.03.  相似文献   

11.
In the present paper photoelectrochemical (PEC) performance of bath deposited CdS thin films based on complexing agents i.e. ammonia and triethanolamine (TEA) has been discussed. Effect of annealing has also been analyzed. The as-deposited and annealed (at 523 K for 1 h in air) films were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) absorption spectroscopy, SEM, electrochemical impedance spectroscopy (EIS), and PEC properties. XRD studies revealed that the films were nanocrystalline in nature with mixed hexagonal and cubic phases. TEA complex resulted in better crystallinity. Further improvement in the crystallinity of the films was observed after air annealing. The marigold flower-like structure, in addition to flakes morphology, was observed with TEA complex, whereas for ammonia complex only flakes morphology was observed. The UV-vis absorption studies revealed that the optical absorption edge for the films with ammonia and TEA complex was around 475 nm and 500 nm, respectively. Annealing of the films resulted in red shift in the UV-vis absorption. The PEC cell performance of CdS films was found to be strongly affected by crystallinity and morphology of the films resulted due to complexing agent and annealing. The air annealed film deposited using TEA complex showed maximum short circuit current density (Jsc) and open circuit voltage (Voc) i.e. 99 μA/cm2 and 376 mV respectively, under 10 mW/cm2 of illumination. The films deposited using TEA complex showed good stability under PEC cell conditions.  相似文献   

12.
Zirconia and ultra-high molecular weight polyethylene (UHMWPE) are common materials for artificial joints. However, the failure of artificial joints is mainly caused by the wear of UHMWPE. Therefore, the development of effective measures to enhance the service life of UHMWPE is one of the most important facets of research on total joint replacement. The purpose of this study is to use an atmospheric-pressure plasma system to modify zirconia and UHMPWE surfaces, which is expected to increase the adsorption of joint-lubricating fluids, thus reducing the abrasion and wear of UHMWPE (73% improvement). Surface modification experiments were carried out using an atmospheric-pressure plasma system, while fourier transform infrared spectroscopy was used to characterize the surfaces treated with atmospheric-pressure plasma. The results of water contact angle tests indicated that the plasma-treated material surfaces exhibited excellent hydrophilicity (70% improvement). In addition, the treatment of materials with atmospheric plasma was confirmed to increase the adsorption of lubricating fluid and reduce wear, thus extending the service life of UHMWPE.  相似文献   

13.
Mesoporous zirconia nanophases with structural defects were synthesized by using a surfactant-templated method. Physicochemical properties and crystalline structures of the zirconia nanophases were studied by means of thermogravimetric analysis (TGA), N2 physosorption isotherm and in situ Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The resultant materials show typical mesoporous features which vary with calcination temperature. The cationic surfactant in the network of the solids induces structural deformation and defect creation. The zirconia consists of monoclinic and tetragonal nanophases which contains many structural defects, and its crystalline structure shows microstrain. Both, concentration of lattice defects and degree of the crystal microstrain, decrease as the calcination temperature is increased. When CO is adsorbed on the surface of Pd/ZrO2, linear bonds of CO–Pd0, CO–Pdδ+ and CO–Zr4+ are formed, accompanying with CO2 production. Catalytic evaluation shows that the Pd/ZrO2 catalyst is very active for CO oxidation and NO reduction. In the case of oxygen absence from reaction mixture, high selectivity to N2 is achieved without any NO2 formation. In the oxygen rich condition, CO conversion is enhanced but less than 19% NO2 is produced. N2O is formed only in the reducing condition and its selectivity is sensitive to reaction temperature. The possible mechanisms of NO + CO and NO + CO + O2 reactions over Pd/ZrO2 catalyst related to reactant dissociation on the Pd metals and to defective structure of the nanozirconia support are discussed.  相似文献   

14.
Electron capture by Li+ and H projectiles in grazing scattering from Cu(111) and Cu(110) surfaces is studied experimentally and theoretically. Whereas data for Cu(110) can be described by established theoretical methods treating resonant charge transfer with a free-electron metal, data for Cu(111) show pronounced deviations from this approach. We interpret our observations by the effect of the projected L-band gap of the Cu(111) surface. In particular, the quantum states of reduced dimension (2D surface state continuum) play a dominant role in electron transfer.  相似文献   

15.
ZnS:Gd, ZnS: Cu, Gd and ZnS: Mn, Gd phosphors have been prepared by firing the samples in argon atmosphere. Spectral distributions in these phosphors are discussed with appropriate mechanism. ZnS:Cu, Gd and ZnS:Mn, Gd are found to be examples of multiple band phosphors. Enhancement and quenching of the emission band intensities of all these phosphors have been studied inpel emission. It is observed that Gd3+ ions play an important role in transferring their excitation energy to other centres. The voltage and frequency variation ofel brightness are in agreement with collision excitation mechanism in Schottky barrier at the metal semiconductor interface. Studies in phosphorescence and thermoluminescence of these phosphors have also been carried out. It is observed that trap-depth changes slowly with temperature and dopant concentration. The values of trapping parameters have been evaluated. The irregular variation of the life-time of electrons in the traps. with temperature shows the existence of retrapping in these phosphors.  相似文献   

16.
司继伟  曹庆琪  顾本喜  都有为 《中国物理》2005,14(10):2117-2121
A series of polycrystalline Cu-doped n=2 Ruddlesden-Popper manganates La1.2Sr1.8CuzMn(2-x)O7 (x=0, 0.04, 0.13) were synthesized by the solid state reaction method. The effect of Cu doping on the magnetic and transport properties has been studied. It is found that Cu substitution for Mn greatly affects the magnetic and electrical properties of the parent phase La1.2Sr1.8Mn2O7. With the increase of Cu content, the system undergoes a transition from longrange ferromagnetic order to the spin glass state and further to an antiferromagnetic order. A little of Cu dopant can lead to the samples showing semiconductor or insulator behaviour in the whole observed temperature range while the parent phase has a metal-insulator transition. These samples show colossal magnetoresistance at low temperatures and the value of it decreases with increasing Cu content.  相似文献   

17.
The effect is treated of the space charge field and of the crystallite size on the properties of ferroceramics of different compositions. The established qualitative correlation between the structure and electrophysical parameters, the crystallite size, and the space charge field may be useful in designing ferropiezoceramic materials for different applications and devices involving such materials.  相似文献   

18.
Computer simulation is used for analyzing the possibility of changing the ultimate strain in samples of “interface” materials whose mechanical behavior is determined by strain localization at the interfaces of structural elements (blocks, grains, etc.) by controlled modification of surface layers. It is shown that a considerable improvement of the deformability of samples subjected to cyclic loading can be attained by reducing the Young modulus and the elastic limit of interfaces in the surface layer. This effect can be explained by the large volume of the material involved in irreversible strain accumulation, which suppresses strain localization in the vicinity of stress macroconcentrators and delays the crack formation.  相似文献   

19.
《Current Applied Physics》2014,14(5):761-767
Short composite nanofibers were fabricated by electrospinning polymer/TiO2 nanoparticle solutions of 13 wt. % cellulose acetate as a polymer under a voltage of 5.5 kV and at a flow rate of 0.1 μL/min, and the nanoparticles could be added in concentrations as high as 50 wt. %. The length of the short composite nanofibers was significantly decreased from 112 to 70 μm by the addition of at least a 5 wt. % concentration of nanoparticles, and it gradually continued to decrease as the nanoparticle concentration was increased. The length of the short composite nanofibers with a low concentration of nanoparticles was affected by the surface charge of the nanoparticles, and negatively charged nanoparticles readily dispersed to the negatively charged polymers in solution, which resulted in an elongation of the fabricated short composite nanofibers.  相似文献   

20.
The features of processes occurring on the surface of vanadium and its alloys irradiated using the ILU ion-beam accelerator with Ar+ ions at an energy of 20 and 40 keV up to doses of 5.0 × 1021 m?2 and 1.0 × 1022 m?2 at T irr ≈ 700 K are studied. The effect of the dose and energy of implanted ions on the surface hardness is obtained. The thickness of the hardened layer is more than two orders of magnitude higher than the theoretical and experimental projected range of Ar+ ions at an energy of 20 and 40 keV in vanadium. Structural changes in the surface layers, which are expressed in a change in the intensity of reflections from a number of planes and an increase in the crystal-lattice parameter of the irradiated materials, are also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号